Shock and Vibration

Shock and Vibration / 2012 / Article
Special Issue

International Conference on Structural Engineering Dynamics – ICEDyn 2011

View this Special Issue

Open Access

Volume 19 |Article ID 597542 |

Young-Sup Lee, Sang-Kwon Lee, Kihong Shin, "Piezoceramic Cantilever Sensor Design for Weak-Impact Detection on Plates", Shock and Vibration, vol. 19, Article ID 597542, 12 pages, 2012.

Piezoceramic Cantilever Sensor Design for Weak-Impact Detection on Plates

Received25 Apr 2012
Accepted25 Apr 2012


A piezoelectric cantilever type sensor for locating the precise weak-impact or touch position on a plate is presented in this paper. Since the importance of human-computer interface such as a touch panel system has been rapidly increasing recently, this study could suggest an appropriate sensor for the detection of a weak-impact point effectively and accurately for such a system. This sensor detects the out-of-plane vibration of a panel when a touch with a finger or pen is applied on it. The sensor is made with a steel beam and a single crystal PMN-PT patch is bonded on the beam, which is designed to detect the base vibration of the panel. The sensor was designed, manufactured to verify the detect ability of a weak-impact and attached on two different plates of a glass of 400 × 400 × 4 mm and a wooden MDF of 600 × 600 × 9 mm. The experiment result of the sensor was compared with that of an accelerometer which can also be used for the same purpose and shows clear weak-impact responses with a narrow-band property at its resonant frequency. It is expected that the cantilever type sensor in this study could be applied to make a simple flat plate into a touch panel when the time difference of arrivals method is used to locate the weak-impact point.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Order printed copiesOrder

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.