Shock and Vibration

Shock and Vibration / 2012 / Article
Special Issue

International Conference on Structural Engineering Dynamics – ICEDyn 2011

View this Special Issue

Open Access

Volume 19 |Article ID 651262 |

A. Schmidt, S. Bograd, L. Gaul, "Measurement of Join Patch Properties and Their Integration into Finite-Element Calculations of Assembled Structures", Shock and Vibration, vol. 19, Article ID 651262, 9 pages, 2012.

Measurement of Join Patch Properties and Their Integration into Finite-Element Calculations of Assembled Structures

Received25 Apr 2012
Accepted25 Apr 2012


The vibration and damping characteristics of an assembled structure made of steel are investigated by an experimental modal analysis and compared with the results of a finite element modal analysis. A generic experiment is carried out to evaluate the stiffness and the damping properties of the structure's join patches. Using these results, an appropriate finite element model of the structure is developed where the join patches are represented by thin-layer elements containing material properties which are derived from the generic experiment's results. The joint's stiffness is modeled by orthotropic material behavior whereas the damping properties are represented by the model of constant hysteresis, leading to a complex-valued stiffness matrix. A comparison between the experimental and the numerical modal analysis shows good agreement. A more detailed damping model in conjunction with an optimization procedure for the joint's parameters results in an improved correlation between the experimental and the numerical modal quantities and reveals that the results of the generic experiment are sound.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Order printed copiesOrder

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.