Shock and Vibration

Shock and Vibration / 2013 / Article

Open Access

Volume 20 |Article ID 286461 | https://doi.org/10.3233/SAV-130783

Renping Shao, Wentao Hu, Jing Li, "Multi-Fault Feature Extraction and Diagnosis of Gear Transmission System Using Time-Frequency Analysis and Wavelet Threshold De-Noising Based on EMD", Shock and Vibration, vol. 20, Article ID 286461, 18 pages, 2013. https://doi.org/10.3233/SAV-130783

Multi-Fault Feature Extraction and Diagnosis of Gear Transmission System Using Time-Frequency Analysis and Wavelet Threshold De-Noising Based on EMD

Received26 Jan 2012
Revised04 Aug 2012
Accepted19 Oct 2012

Abstract

gear transmission system is a complex non-stationary and nonlinear time-varying coupling system. When faults occur on gear system, it is difficult to extract the fault feature. This paper researches the threshold principle in the process of using the wavelet transform to de-noise the system, and combines EMD (empirical mode decomposition) with wavelet threshold de-noising to solve the problem. The wavelet threshold de-noising is acts on the high-frequency IMF (Intrinsic Mode Function) component of the signal, and does overcome the defect by simply highlighting the fault feature. On this basis, the pre-processed signal is analyzed by the method of time-frequency analysis to extract the feature of the signal. The result shows that the SNR (signal-noise ratio) of the signal was largely improved, and the fault feature of the signal can therefore be effectively extracted. Combined with time-frequency analyses in the different running conditions (300 rpm, 900 rpm), various faults such as tooth root crack, tooth wear and multi-fault can be identified effectively. Based on this theory and combining the merits of MATLAB and VC++, a multi-functional gear fault diagnosis software system is successfully exploited.

Copyright © 2013 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views647
Downloads1327
Citations

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.