Shock and Vibration

Shock and Vibration / 2013 / Article

Open Access

Volume 20 |Article ID 469497 | 11 pages | https://doi.org/10.3233/SAV-130796

5-DOF Dynamic Model of Vehicle Shimmy System with Clearance at Universal Joint in Steering Handling Mechanism

Received02 Oct 2012
Revised11 Jan 2013
Accepted13 Apr 2013

Abstract

5-DOF dynamic model of vehicle shimmy system with clearance in universal joint of steering handling mechanism is presented. The sub model of cross shaft universal joint with clearance is built based on Hertz' theory, and two-state model is applied to describe the contact force. The sub model of the universal joint is combined with the simplified dynamic model of steering system, and a 5-DOF dynamic model of vehicle shimmy system with consideration of assembling clearance in universal joint of steering handling mechanism is presented. Based on this model, numerical analysis is carried out to evaluate the influence of clearance in universal joint on the dynamic behavior of the vehicle shimmy system. The results show that the clearance and some other parameters, such as vehicle speed, have coupled contribution to the dynamic behavior of the vehicle shimmy system. The conclusions provide theoretical basis for effective attenuation of vehicle shimmy, especially for those in-service vehicles.

Copyright © 2013 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

511 Views | 1366 Downloads | 9 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.