Shock and Vibration

Shock and Vibration / 2013 / Article

Open Access

Volume 20 |Article ID 508238 | 15 pages | https://doi.org/10.3233/SAV-130797

Fault Tolerant Vibration-Attenuation Controller Design for Uncertain Linear Structural Systems with Input Time-Delay and Saturation

Received30 Jan 2013
Revised08 Apr 2013
Accepted13 Apr 2013

Abstract

The problem of fault tolerant vibration-attenuation controller design for uncertain linear structural systems with control input time-delay and saturation is investigated in this paper. The objective of designing controllers is to guarantee the asymptotic stability of closed-loop systems while attenuate disturbance from earthquake excitation. Firstly, based on matrix transformation, the structural system is described as state-space model, which contains actuator fault, input signal time-delay and saturation at the same time. Based on the obtained model, an LMIs-based condition for the system to be stabilizable is deduced. By solving these LMIs, the controller is established for the closed-loop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, an example is included to demonstrate the effectiveness of the proposed theorems.

Copyright © 2013 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

437 Views | 542 Downloads | 6 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.