Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2014 (2014), Article ID 727404, 9 pages
http://dx.doi.org/10.1155/2014/727404
Research Article

Damage Localization and Quantification of Truss Structure Based on Electromechanical Impedance Technique and Neural Network

College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Pingleyuan 100, Chaoyang District, Beijing 100124, China

Received 18 December 2013; Revised 26 May 2014; Accepted 5 June 2014; Published 29 June 2014

Academic Editor: Gyuhae Park

Copyright © 2014 Cunfu He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Y. Lim, S. Bhalla, and C. K. Soh, “Structural identification and damage diagnosis using self-sensing piezo-impedance transducers,” Smart Materials & Structures, vol. 15, no. 4, pp. 987–995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Giurgiutiu, K. Harries, M. Petrou, J. Bost, and J. B. Quattlebaum, “Disbond detection with piezoelectric wafer active sensors in RC structures strengthened with FRP composite overlays,” Earthquake Engineering and Engineering Vibration, vol. 2, no. 2, pp. 213–223, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. H. A. Sodano, G. Park, and D. J. Inman, “An investigation into the performance of macro-fiber composites for sensing and structural vibration applications,” Mechanical Systems and Signal Processing, vol. 18, no. 3, pp. 683–697, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. F. P. Sun, Z. Chaudhry, C. Liang, and C. A. Rogers, “Truss structure integrity identification using PZT sensor-actuator,” Journal of Intelligent Material Systems and Structures, vol. 6, no. 1, pp. 134–139, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Ritdumrongkul and Y. Fujino, “Identification of the location and level of damage in multiple-bolted-joint structures by PZT actuator-sensors,” Journal of Structural Engineering, vol. 132, no. 2, pp. 304–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. V. Palomino, K. M. Tsuruta, J. R. V. Mour Jr., D. A. Radea, V. Steffen Jr., and D. J. Inman, “Evaluation of the influence of sensor geometry and physical parameters on impedance-based structural health monitoring,” Shock and Vibration, vol. 19, no. 5, pp. 811–823, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Yan, C. W. Lim, J. B. Cai, and W. Q. Chen, “An electromechanical impedance approach for quantitative damage detection in Timoshenko beams with piezoelectric patches,” Smart Materials and Structures, vol. 16, no. 4, pp. 1390–1400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Yang and B. S. Divsholi, “Sub-frequency interval approach in electromechanical impedance technique for concrete structure health monitoring,” Sensors, vol. 10, no. 12, pp. 11644–11661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. S. Divsholi and Y. Yang, “Health monitoring of steel structures using sub-frequency electromechanical impedance technique,” Journal of Nondestructive Evaluation, vol. 31, no. 3, pp. 197–207, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. V. G. M. Annamdas and Y. Yang, “Practical implementation of piezo-impedance sensors in monitoring of excavation support structures,” Structural Control & Health Monitoring, vol. 19, no. 2, pp. 231–245, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Shanker, S. Bhalla, and A. Gupta, “Integration of electro-mechanical impedance and global dynamic techniques for improved structural health monitoring,” Journal of Intelligent Material Systems and Structures, vol. 21, no. 3, pp. 285–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Giurgiutiu and A. Zagrai, “Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method,” Structural Health Monitoring, vol. 4, no. 2, pp. 99–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Lopes Jr., G. Park, H. H. Cudney, and D. J. Inman, “Impedance-based structural health monitoring with artificial neural networks,” Journal of Intelligent Material Systems and Structures, vol. 11, no. 3, pp. 206–214, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Liang, F. P. Sun, and C. A. Rogers, “Coupled electro-mechanical analysis of adaptive material systems—determination of the actuator power consumption and system energy transfer,” Journal of Intelligent Material Systems and Structures, vol. 5, no. 1, pp. 12–20, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Na and H. K. Lee, “Resonant frequency range utilized electro-mechanical impedance method for damage detection performance enhancement on composite structures,” Composite Structures, vol. 94, no. 8, pp. 2383–2389, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Na and H. K. Lee, “A technique for improving the damage detection ability of the electro-mechanical impedance method on concrete structures,” Smart Materials and Structures, vol. 21, no. 8, Article ID 085024, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Park, H. Sohn, C. R. Farrar, and D. J. Inman, “Overview of piezoelectric impedance-based health monitoring and path forward,” Shock and Vibration Digest, vol. 35, no. 6, pp. 451–463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Park, J. Lee, C. Yun, and D. J. Inman, “A built-in active sensing system-based structural health monitoring technique using statistical pattern recognition,” Journal of Mechanical Science and Technology, vol. 21, no. 6, pp. 896–902, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. L. Rickli and J. A. Camelio, “Damage detection in assembly fixtures using non-destructive electromechanical impedance sensors and multivariate statistics,” International Journal of Advanced Manufacturing Technology, vol. 42, no. 9-10, pp. 1005–1015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Hai, A. Weiguang, Y. Duohe, and W. Binsheng, “Static force reliability analysis of truss structure with piezoelectric patches affixed to its surface,” Chinese Journal of Aeronautics, vol. 22, no. 1, pp. 22–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Min, S. Park, and C. Yun, “Impedance-based structural health monitoring using neural networks for autonomous frequency range selection,” Smart Materials and Structures, vol. 19, no. 12, Article ID 125011, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Min, S. Park, C. Yun, C. Lee, and C. Lee, “Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity,” Engineering Structures, vol. 39, pp. 210–220, 2012. View at Publisher · View at Google Scholar · View at Scopus