Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2014, Article ID 765875, 16 pages
http://dx.doi.org/10.1155/2014/765875
Research Article

Modeling and Dynamical Behavior of Rotating Composite Shafts with SMA Wires

College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266510, China

Received 7 May 2013; Accepted 22 January 2014; Published 4 March 2014

Academic Editor: Mohammad Elahinia

Copyright © 2014 Yongsheng Ren et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. P. Singh, H. B. H. Gubran, and K. Gupta, “Developments in dynamics of composite material shafts,” International Journal of Rotating Machinery, vol. 3, no. 3, pp. 189–198, 1997. View at Google Scholar · View at Scopus
  2. B. S. Yang and W. D. Pilkey, “Accurate free vibration analysis for rotating shafts,” in Proceedings of the ASME Rotating Machinery and Vehicle Dynamics, vol. 35, pp. 133–138, 1991.
  3. C.-D. Kim and C. W. Bert, “Critical speed analysis of laminated composite, hollow drive shafts,” Composites Engineering, vol. 3, no. 7-8, pp. 633–643, 1993. View at Google Scholar · View at Scopus
  4. C. W. Bert and C.-D. Kim, “Whirling of composite-material driveshafts including bending-twisting coupling and transverse shear deformation,” Journal of Vibration and Acoustics, vol. 117, no. 1, pp. 17–21, 1995. View at Google Scholar · View at Scopus
  5. O. Song, N.-H. Jeong, and L. Librescu, “Implication of conservative and gyroscopic forces on vibration and stability of an elastically tailored rotating shaft modeled as a composite thin-walled beam,” Journal of the Acoustical Society of America, vol. 109, no. 3, pp. 972–981, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. L. W. Rehfield, “Design analysis methodology for composite rotor blades,” in Proceedings of the 7th DoD/NASA Conference on Fibrous Composites in Structural Design, Denver, Colo, USA, June 1985.
  7. V. Berdichevsky, E. Armanios, and A. Badir, “Theory of anisotropic thin-walled closed-cross-section beams,” Composites Engineering, vol. 2, no. 5–7, pp. 411–432, 1992. View at Google Scholar · View at Scopus
  8. C. A. Rogers, C. Liang, and D. K. Barker, “Dynamic control concepts using shape memory alloy reinforced plates,” in Proceedings of the Smart Materials Structures and Mathematical Issues, C. A. Rogers, Ed., pp. 39–62, Technomic Publishing, Lancaster, Pa, USA, 1989.
  9. A. Baz and T. Chen, “Performance of nitinol reinforced drive shafts,” in Smart Structure and Intelligent Systems, vol. 1917 of Proceedings of the SPIE, pp. 791–708, 1993.
  10. K. Gupta, “Critical speed analysis of fibre reinforced composite rotor embedded with shape memory alloy wires,” International Journal of Rotating Machinery, vol. 6, no. 3, pp. 201–213, 2000. View at Google Scholar · View at Scopus
  11. S. Sawhney and S. K. Jain, Vibration control of fibre-reinforced composite rotor using shape memory alloy (SMA) wires [BTech Dissertation], IIT Delhi, New Delhi, India, 2001.
  12. A. Baz and T. Chen, “Torsional stiffness of NITINOL-reinforced composite drive shafts,” Composites Engineering, vol. 3, no. 12, pp. 1119–1130, 1993. View at Google Scholar · View at Scopus
  13. A. Tylikowski, “Dynamic stability of rotating composite shells with thermoactive shape memory alloy fibers,” Journal of Thermal Stresses, vol. 21, no. 3-4, pp. 327–339, 1998. View at Google Scholar · View at Scopus
  14. A. Tylikowski and R. B. Hetnarski, “Semiactive control of a shape memory alloy hybrid composite rotating shaft,” International Journal of Solids and Structures, vol. 38, no. 50-51, pp. 9347–9357, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Gupta, S. Sawhney, S. K. Jain, and A. K. Darpe, “Stiffness characteristics of fibre-reinforced composite shaft embedded with shape memory alloy wires,” Defence Science Journal, vol. 53, no. 2, pp. 167–173, 2003. View at Google Scholar · View at Scopus
  16. L. C. Brinson, “One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable,” Journal of Intelligent Material Systems and Structures, vol. 4, no. 2, pp. 229–242, 1993. View at Google Scholar · View at Scopus
  17. S.-Y. Oh, L. Librescu, and O. Song, “Vibration and instability of functionally graded circular cylindrical spinning thin-walled beams,” Journal of Sound and Vibration, vol. 285, no. 4-5, pp. 1071–1091, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Librescu, Elasto-Statics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures, Noordhoff International Publishers, Leyden, The Netherlands, 1975.
  19. E. C. Smith and I. Chopra, “Formulation and evaluation of an analytical model for composite box-beams,” Journal of the American Helicopter Society, vol. 36, no. 3, pp. 23–35, 1991. View at Google Scholar · View at Scopus
  20. K. Bhaskar and L. Librescu, “A geometrically non-linear theory for laminated anisotropic thin-walled beams,” International Journal of Engineering Science, vol. 33, no. 9, pp. 1331–1344, 1995. View at Google Scholar · View at Scopus
  21. S. S. Sun, G. Sun, F. Han, and J. S. Wu, “Thermoviscoelastic analysis for a polymeric composite plate with embedded shape memory alloy wires,” Composite Structures, vol. 58, no. 2, pp. 295–302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. R. Banerjee and H. Su, “Development of a dynamic stiffness matrix for free vibration analysis of spinning beams,” Computers and Structures, vol. 82, no. 23-26, pp. 2189–2197, 2004. View at Publisher · View at Google Scholar · View at Scopus