Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2014, Article ID 957531, 9 pages
http://dx.doi.org/10.1155/2014/957531
Research Article

Quantitative Diagnosis of Rotor Vibration Fault Using Process Power Spectrum Entropy and Support Vector Machine Method

1School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
2School of Computer Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
3School of Life Science, Beijing Normal University, Beijing 100875, China

Received 19 November 2013; Revised 8 March 2014; Accepted 10 March 2014; Published 31 March 2014

Academic Editor: Valder Steffen

Copyright © 2014 Cheng-Wei Fei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Ewins, “Control of vibration and resonance in aero engines and rotating machinery—an overview,” International Journal of Pressure Vessels and Piping, vol. 87, no. 9, pp. 504–510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Al-Badour, M. Sunar, and L. Cheded, “Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques,” Mechanical Systems and Signal Processing, vol. 25, no. 6, pp. 2083–2101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. C. W. Fei and G. C. Bai, “Wavelet correlation feature scale entropy and fuzzy support vector machine approach for aeroengine whole-body vibration fault diagnosis,” Shock and Vibration, vol. 20, no. 2, pp. 341–349, 2013. View at Publisher · View at Google Scholar
  4. P. W. Tse, S. Gontarz, and X. J. Wang, “Enhanced eigenvector algorithm for recovering multiple sources of vibration signals in machine fault diagnosis,” Mechanical Systems and Signal Processing, vol. 21, no. 7, pp. 2794–2813, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J.-D. Wu and C.-H. Liu, “An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network,” Expert Systems with Applications, vol. 36, no. 3, pp. 4278–4286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L. A. Overbey and M. D. Todd, “Dynamic system change detection using a modification of the transfer entropy,” Journal of Sound and Vibration, vol. 322, no. 1-2, pp. 438–453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Qu, L. Li, and J. Lee, “Enhanced diagnostic certainty using information entropy theory,” Advanced Engineering Informatics, vol. 17, no. 3-4, pp. 141–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Cui, L. Zhang, R. Kang, and X. Lan, “Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method,” Journal of Loss Prevention in the Process Industries, vol. 22, no. 6, pp. 864–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Xing, “Physical entropy, information entropy and their evolution equations,” Science in China A: Mathematics, Physics, Astronomy, vol. 44, no. 10, pp. 1331–1339, 2001. View at Google Scholar · View at Scopus
  10. H. Endo and R. B. Randall, “Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter,” Mechanical Systems and Signal Processing, vol. 21, no. 2, pp. 906–919, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Wang, Y. T. Ai, X. F. Liu et al., “Study on quantitative diagnosis method of rotor vibration faults based on process information entropy,” in Proceedings of the 2nd International Conference on Computer Engineering and Technology (ICCET '10), pp. V5-407–V5-411, Chengdu, China, April 2010. View at Publisher · View at Google Scholar
  12. J. Ye, “Fault diagnosis of turbine based on fuzzy cross entropy of vague sets,” Expert Systems with Applications, vol. 36, no. 4, pp. 8103–8106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. N. García-Pedrajas and D. Ortiz-Boyer, “An empirical study of binary classifier fusion methods for multiclass classification,” Information Fusion, vol. 12, no. 2, pp. 111–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Ding and J. Yuan, “Spike sorting based on multi-class support vector machine with superposition resolution,” Medical and Biological Engineering and Computing, vol. 46, no. 2, pp. 139–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Z.-W. Guo and G.-C. Bai, “Classification using least squares support vector machine for reliability analysis,” Applied Mathematics and Mechanics, vol. 30, no. 7, pp. 853–864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Widodo and B.-S. Yang, “Support vector machine in machine condition monitoring and fault diagnosis,” Mechanical Systems and Signal Processing, vol. 21, no. 6, pp. 2560–2574, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S.-F. Yuan and F.-L. Chu, “Support vector machines-based fault diagnosis for turbo-pump rotor,” Mechanical Systems and Signal Processing, vol. 20, no. 4, pp. 939–952, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Saimurugan, K. I. Ramachandran, V. Sugumaran, and N. R. Sakthivel, “Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine,” Expert Systems with Applications, vol. 38, no. 4, pp. 3819–3826, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. W. T. Peter, Y. H. Peng, and R. Yam, “Wavelet analysis and envelop detection for rolling element bearing fault diagnosis their effectives and flexibilities,” Journal of Vibration and Acoustics, vol. 12, no. 3, pp. 303–310, 2000. View at Publisher · View at Google Scholar