Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2015, Article ID 382541, 8 pages
Research Article

Frequency Dependent Spencer Modeling of Magnetorheological Damper Using Hybrid Optimization Approach

Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC, Canada H3G 1M8

Received 23 December 2014; Revised 5 March 2015; Accepted 5 March 2015

Academic Editor: Weihua Li

Copyright © 2015 Ali Fellah Jahromi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Magnetorheological dampers have been widely used in civil and automotive industries. The nonlinear behavior of MR fluid makes MR damper modeling a challenging problem. In this paper, a frequency dependent MR damper model is proposed based on Spencer MR damper model. The parameters of the model are identified using an experimental data based hybrid optimization approach which is a combination of Genetic Algorithm and Sequential Quadratic Programming approach. The frequency in the proposed model is calculated using measured relative velocity and relative displacement between MR damper ends. Therefore, the MR damper model will be function of frequency. The mathematical model is validated using the experimental results which confirm the improvement in the accuracy of the model and consistency in the variation damping with the frequency.