Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2015, Article ID 469165, 8 pages
http://dx.doi.org/10.1155/2015/469165
Research Article

An Adaptive Support Vector Regression Machine for the State Prognosis of Mechanical Systems

1School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049, China
3State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Received 12 December 2014; Accepted 20 January 2015

Academic Editor: Yanxue Wang

Copyright © 2015 Qing Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Heng, S. Zhang, A. C. C. Tan, and J. Mathew, “Rotating machinery prognostics: state of the art, challenges and opportunities,” Mechanical Systems and Signal Processing, vol. 23, no. 3, pp. 724–739, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Gebraeel, M. Lawley, R. Liu, and V. Parmeshwaran, “Residual life predictions from vibration-based degradation signals: a neural network approach,” IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 694–700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. P. W. Tse and D. P. Atherton, “Prediction of machine deterioration using vibration based fault trends and recurrent neural networks,” Transactions of the ASME—Journal of Vibration and Acoustics, vol. 121, no. 3, pp. 355–362, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Gebraeel, “Sensory-updated residual life distributions for components with exponential degradation patterns,” IEEE Transactions on Automation Science and Engineering, vol. 3, no. 4, pp. 382–393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Guida and G. Pulcini, “The inverse Gamma process: a family of continuous stochastic models for describing state-dependent deterioration phenomena,” Reliability Engineering and System Safety, vol. 120, pp. 72–79, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, “Remaining useful life estimation—a review on the statistical data driven approaches,” European Journal of Operational Research, vol. 213, no. 1, pp. 1–14, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. C. Hua, Q. Zhang, G. Xu, Y. Zhang, and T. Xu, “Performance reliability estimation method based on adaptive failure threshold,” Mechanical Systems and Signal Processing, vol. 36, no. 2, pp. 505–519, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Benkedjouh, K. Medjaher, N. Zerhouni, and S. Rechak, “Remaining useful life estimation based on nonlinear feature reduction and support vector regression,” Engineering Applications of Artificial Intelligence, vol. 26, no. 7, pp. 1751–1760, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Qu and M. J. Zuo, “An LSSVR-based algorithm for online system condition prognostics,” Expert Systems with Applications, vol. 39, no. 5, pp. 6089–6102, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. V. T. Tran, H. Thom Pham, B.-S. Yang, and T. Tien Nguyen, “Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine,” Mechanical Systems and Signal Processing, vol. 32, pp. 320–330, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Shen, D. Wang, Y. Liu, F. Kong, and P. W. Tse, “Recognition of rolling bearing fault patterns and sizes based on two-layer support vector regression machines,” Smart Structures and Systems, vol. 13, no. 3, pp. 453–471, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Wang, “A two-stage prognosis model in condition based maintenance,” European Journal of Operational Research, vol. 182, no. 3, pp. 1177–1187, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Yang, K. Huang, I. King, and M. R. Lyu, “Localized support vector regression for time series prediction,” Neurocomputing, vol. 72, no. 10–12, pp. 2659–2669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J.-L. Wu and P.-C. Chang, “A trend-based segmentation method and the support vector regression for financial time series forecasting,” Mathematical Problems in Engineering, vol. 2012, Article ID 615152, 20 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. R. A. Maronna, R. D. Martin, and V. J. Yohai, Robust Statistics: Theory and Methods, Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester, UK, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  17. Q. Zhang, C. Hua, and G. Xu, “A mixture Weibull proportional hazard model for mechanical system failure prediction utilising lifetime and monitoring data,” Mechanical Systems and Signal Processing, vol. 43, no. 1-2, pp. 103–112, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy, “SVMand kernel methods Matlab toolbox,” in Perception Systems et Information, INSA de Rouen, Rouen, France, 2005. View at Google Scholar
  19. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.0 beta,” 2013, http://cvxr.com/cvx/.