Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2015, Article ID 964805, 10 pages
Research Article

Performance Improvement of Ensemble Empirical Mode Decomposition for Roller Bearings Damage Detection

Dynamics & Identification Research Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Received 10 October 2014; Revised 11 February 2015; Accepted 24 February 2015

Academic Editor: Ahmet S. Yigit

Copyright © 2015 Ali Akbar Tabrizi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Ensemble empirical mode decomposition (EEMD) is a noise assisted method widely used for roller bearing damage detection. However, to successfully handle this technique still remains a great challenge: identification of two effective parameters (the amplitude of added noise and the number of ensemble trials), which affect the performances of the EEMD. Although a number of algorithms or values have been proposed, there is no robust guide to select optimal amplitude and the ensemble trial number yet, especially for early damage detection. In this study, a reliable method is proposed to determine the suitable amplitude and the proper number of trials is investigated as well. It is shown that the proposed method (performance improved EEMD) achieves higher damage detection success rate and creates larger Margin than the original algorithm. It leads to a substantially low trial numbers required to achieve perfect labelling of samples; in turn this fact leads to considerably less computational cost. The number of real vibration signals is analysed to verify effectiveness and robustness of the proposed method in discriminating and separating the faulty conditions.