Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2016, Article ID 1835127, 12 pages
http://dx.doi.org/10.1155/2016/1835127
Research Article

Sparse Signal Representations of Bearing Fault Signals for Exhibiting Bearing Fault Features

1Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China
2Institute of Reliability Engineering, School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 610051, China
3Department of Systems Engineering and Engineering Management, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
4School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215021, China

Received 5 May 2015; Revised 7 October 2015; Accepted 12 October 2015

Academic Editor: Peng Chen

Copyright © 2016 Wei Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Luo, J. Cheng, and H. Ao, “Application of LCD-SVD technique and CRO-SVM method to fault diagnosis for roller bearing,” Shock and Vibration, vol. 2015, Article ID 847802, 8 pages, 2015. View at Publisher · View at Google Scholar
  2. X. Zhang, J. Kang, L. Xiao, J. Zhao, and H. Teng, “A new improved kurtogram and its application to bearing fault diagnosis,” Shock and Vibration, vol. 2015, Article ID 385412, 22 pages, 2015. View at Publisher · View at Google Scholar
  3. Q. He, X. Ding, and Y. Pan, “Machine fault classification based on local discriminant bases and locality preserving projections,” Mathematical Problems in Engineering, vol. 2014, Article ID 923424, 12 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Miao, L. Cong, and M. Pecht, “Identification of multiple characteristic components with high accuracy and resolution using the zoom interpolated discrete Fourier transform,” Measurement Science and Technology, vol. 22, no. 5, Article ID 055701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Lei, J. Lin, Z. He, and Y. Zi, “Application of an improved kurtogram method for fault diagnosis of rolling element bearings,” Mechanical Systems and Signal Processing, vol. 25, no. 5, pp. 1738–1749, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Wang, P. W. Tse, and K. L. Tsui, “An enhanced Kurtogram method for fault diagnosis of rolling element bearings,” Mechanical Systems and Signal Processing, vol. 35, no. 1-2, pp. 176–199, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Antoni, “The spectral kurtosis: a useful tool for characterising non-stationary signals,” Mechanical Systems and Signal Processing, vol. 20, no. 2, pp. 282–307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Chen, Z. Du, J. Li, X. Li, and H. Zhang, “Compressed sensing based on dictionary learning for extracting impulse components,” Signal Processing, vol. 96, part A, pp. 94–109, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. W. He, Z.-N. Jiang, and K. Feng, “Bearing fault detection based on optimal wavelet filter and sparse code shrinkage,” Measurement, vol. 42, no. 7, pp. 1092–1102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. I. S. Bozchalooi and M. Liang, “A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection,” Journal of Sound and Vibration, vol. 308, no. 1-2, pp. 246–267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Su, F. Wang, H. Zhu, Z. Zhang, and Z. Guo, “Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement,” Mechanical Systems and Signal Processing, vol. 24, no. 5, pp. 1458–1472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Qiu, J. Lee, J. Lin, and G. Yu, “Robust performance degradation assessment methods for enhanced rolling element bearing prognostics,” Advanced Engineering Informatics, vol. 17, no. 3-4, pp. 127–140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Wang, W. Guo, and X. Wang, “A joint sparse wavelet coefficient extraction and adaptive noise reduction method in recovery of weak bearing fault features from a multi-component signal mixture,” Applied Soft Computing, vol. 13, no. 10, pp. 4097–4104, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Lin and L. Qu, “Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis,” Journal of Sound and Vibration, vol. 234, no. 1, pp. 135–148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. P. W. Tse and D. Wang, “The automatic selection of an optimal wavelet filter and its enhancement by the new sparsogram for bearing fault detection: part 2 of the two related manuscripts that have a joint title as ‘Two automatic vibration-based fault diagnostic methods using the novel sparsity measurement—parts 1 and 2’,” Mechanical Systems and Signal Processing, vol. 40, no. 2, pp. 520–544, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, IEEE, December 1995. View at Scopus
  17. A. Banks, J. Vincent, and C. Anyakoha, “A review of particle swarm optimization. Part I: background and development,” Natural Computing, vol. 6, no. 4, pp. 467–484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Banks, J. Vincent, and C. Anyakoha, “A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications,” Natural Computing, vol. 7, no. 1, pp. 109–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S.-F. Yuan and F.-L. Chu, “Fault diagnostics based on particle swarm optimisation and support vector machines,” Mechanical Systems and Signal Processing, vol. 21, no. 4, pp. 1787–1798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Samanta and C. Nataraj, “Use of particle swarm optimization for machinery fault detection,” Engineering Applications of Artificial Intelligence, vol. 22, no. 2, pp. 308–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Samanta and C. Nataraj, “Application of particle swarm optimization and proximal support vector machines for fault detection,” Swarm Intelligence, vol. 3, no. 4, pp. 303–325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. G. Nlkolaou and I. A. Antoniadis, “Application of morphological operators as envelope extractors for impulsive-type periodic signals,” Mechanical Systems and Signal Processing, vol. 17, no. 6, pp. 1147–1162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Wang, G. Xu, Q. Zhang, and L. Liang, “Application of improved morphological filter to the extraction of impulsive attenuation signals,” Mechanical Systems and Signal Processing, vol. 23, no. 1, pp. 236–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Hao, Z. Peng, Z. Feng, and F. Chu, “Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings,” Measurement Science and Technology, vol. 22, no. 4, Article ID 045708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Li, P.-L. Zhang, Z.-J. Wang, S.-S. Mi, and Y.-T. Zhang, “Gear fault detection using multi-scale morphological filters,” Measurement, vol. 44, no. 10, pp. 2078–2089, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Li, P.-L. Zhang, Z.-J. Wang, S.-S. Mi, and D.-S. Liu, “A weighted multi-scale morphological gradient filter for rolling element bearing fault detection,” ISA Transactions, vol. 50, no. 4, pp. 599–608, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Li, M. Liang, Y. Zhang, and S. Hou, “Multi-scale autocorrelation via morphological wavelet slices for rolling element bearing fault diagnosis,” Mechanical Systems and Signal Processing, vol. 31, pp. 428–446, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Wang, P. W. Tse, and Y. L. Tse, “A morphogram with the optimal selection of parameters used in morphological analysis for enhancing the ability in bearing fault diagnosis,” Measurement Science and Technology, vol. 23, no. 6, Article ID 065001, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Shen, Q. He, F. Kong, and P. W. Tse, “A fast and adaptive varying-scale morphological analysis method for rolling element bearing fault diagnosis,” Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, vol. 227, no. 6, pp. 1362–1370, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Mallat, A Wavelet Tour of Signal Processing: the Sparse Way, Academic Press, Boston, Mass, USA, 2009. View at MathSciNet
  31. R. Yan, R. X. Gao, and X. Chen, “Wavelets for fault diagnosis of rotary machines: a review with applications,” Signal Processing, vol. 96, pp. 1–15, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Zhang, J. Xu, J. Yang, D. Yang, and D. Wang, “Multiscale morphology analysis and its application to fault diagnosis,” Mechanical Systems and Signal Processing, vol. 22, no. 3, pp. 597–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Lou and K. A. Loparo, “Bearing fault diagnosis based on wavelet transform and fuzzy inference,” Mechanical Systems and Signal Processing, vol. 18, no. 5, pp. 1077–1095, 2004. View at Publisher · View at Google Scholar · View at Scopus