Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2016, Article ID 6748469, 10 pages
http://dx.doi.org/10.1155/2016/6748469
Research Article

Feature Extraction Using Discrete Wavelet Transform for Gear Fault Diagnosis of Wind Turbine Gearbox

1EPC Elektroprivreda BiH, Kreka Coal Mines, 75000 Tuzla, Bosnia and Herzegovina
2Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
3Bruel and Kjær Vibro, 2850 Nærum, Denmark
4Technical University of Denmark, 2800 Lyngby, Denmark

Received 1 July 2015; Revised 17 September 2015; Accepted 27 September 2015

Academic Editor: Chao Tao

Copyright © 2016 Rusmir Bajric et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Global Wind Energy Council, Global Wind Statistics, 2014, http://www.gwec.net/wp-content/uploads/2015/02/GWEC_GlobalWindStats2014_FINAL_10.2.2015.pdf.
  2. BAN Research, International Wind Energy Development: World Market Update 2015, Navigant Consulting, Chicago, Ill, USA, 2013.
  3. P. J. Dempsey and S. Sheng, “Investigation of data fusion applied to health monitoring of wind turbine drivetrain components,” Wind Energy, vol. 16, no. 4, pp. 479–489, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Staffell and R. Green, “How does wind farm performance decline with age?” Renewable Energy, vol. 66, pp. 775–786, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Yang, P. J. Tavner, C. J. Crabtree, Y. Feng, and Y. Qiu, “Wind turbine condition monitoring: technical and commercial challenges,” Wind Energy, vol. 17, no. 5, pp. 673–693, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Feng, Y. Qiu, C. J. Crabtree, H. Long, and P. J. Tavner, “Monitoring wind turbine gearboxes,” Wind Energy, vol. 16, no. 5, pp. 728–740, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Wang, V. Makis, and M. Yang, “A wavelet approach to fault diagnosis of a gearbox under varying load conditions,” Journal of Sound and Vibration, vol. 329, no. 9, pp. 1570–1585, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Zuber, R. Bajrić, and R. Šostakov, “Gearbox faults identification using vibration signal analysis and artificial intelligence methods,” Eksploatacja i Niezawodnosc, vol. 16, no. 1, pp. 61–65, 2014. View at Google Scholar · View at Scopus
  9. Z. Feng, M. Liang, Y. Zhang, and S. Hou, “Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation,” Renewable Energy, vol. 47, pp. 112–126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Večeř, M. Kreidl, and R. Šmíd, “Condition indicators for gearbox condition monitoring systems,” Acta Polytechnica, vol. 45, no. 6, pp. 35–43, 2005. View at Google Scholar
  11. Y. Lei, M. J. Zuo, Z. He, and Y. Zi, “A multidimensional hybrid intelligent method for gear fault diagnosis,” Expert Systems with Applications, vol. 37, no. 2, pp. 1419–1430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Sheldon, G. Mott, H. Lee, and M. Watson, “Robust wind turbine gearbox fault detection,” Wind Energy, vol. 17, no. 5, pp. 745–755, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Luo, C. Hatch, M. Kalb, J. Hanna, A. Weiss, and S. Sheng, “Effective and accurate approaches for wind turbine gearbox condition monitoring,” Wind Energy, vol. 17, no. 5, pp. 715–728, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Siegel, W. Zhao, E. Lapira, M. AbuAli, and J. Lee, “A comparative study on vibration-based condition monitoring algorithms for wind turbine drive trains,” Wind Energy, vol. 17, no. 5, pp. 695–714, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. K. Peng and F. L. Chu, “Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography,” Mechanical Systems and Signal Processing, vol. 18, no. 2, pp. 199–221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Hong and J. S. Dhupia, “A time domain approach to diagnose gearbox fault based on measured vibration signals,” Journal of Sound and Vibration, vol. 333, no. 7, pp. 2164–2180, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Zhan, V. Makis, and A. K. S. Jardine, “Adaptive state detection of gearboxes under varying load conditions based on parametric modelling,” Mechanical Systems and Signal Processing, vol. 20, no. 1, pp. 188–221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Smolders, H. Long, Y. Feng, and P. Tavner, “Reliability analysis and prediction of wind turbine gearboxes,” in Proceedings of the European Wind Energy Conference and Exhibition (EWEC '10), pp. 162–165, Warsaw, Poland, April 2010. View at Scopus
  19. D. E. Newland, “Wavelet analysis of vibration: part 1—theory,” Journal of Vibration and Acoustics, vol. 116, no. 4, pp. 409–416, 1994. View at Publisher · View at Google Scholar
  20. R. Yan, R. X. Gao, and X. Chen, “Wavelets for fault diagnosis of rotary machines: a review with applications,” Signal Processing. Part A, vol. 96, pp. 1–15, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Li, Z. Ma, Y. Liu, W. Teng, and R. Jiang, “Crack fault detection for a gearbox using discrete wavelet transform and an adaptive resonance theory neural network,” Journal of Mechanical Engineering, vol. 61, no. 1, pp. 63–73, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Rafiee, M. A. Rafiee, and P. W. Tse, “Application of mother wavelet functions for automatic gear and bearing fault diagnosis,” Expert Systems with Applications, vol. 37, no. 6, pp. 4568–4579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Dalpiaz, A. Rivola, and R. Rubini, “Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears,” Mechanical Systems and Signal Processing, vol. 14, no. 3, pp. 387–412, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. F. P. García Márquez, A. M. Tobias, J. M. Pinar Pérez, and M. Papaelias, “Condition monitoring of wind turbines: techniques and methods,” Renewable Energy, vol. 46, pp. 169–178, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. P. J. Dempsey, D. R. Wade, L. J. Antolick, and J. Thomas, “Investigation of spiral bevel gear condition indicator validation via AC-29-2C using fielded rotorcraft HUMS data,” Tech. Rep. NASA/TM-2014-218406, NASA, 2014. View at Google Scholar
  27. P. J. Rzeszucinski, J. K. Sinha, R. Edwards, A. Starr, and B. Allen, “Normalised root mean square and amplitude of sidebands of vibration response as tools for gearbox diagnosis,” Strain, vol. 48, no. 6, pp. 445–452, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. L. J. Antolick, J. S. Branning, D. R. Wade, and P. J. Dempsey, “Evaluation of gear condition indicator performance on rotorcraft fleet,” in Proceedings of the 66th Annual Forum of the American Helicopter Society, Phoenix, Ariz, USA, May 2010.
  29. P. D. Samuel and D. J. Pines, “A review of vibration-based techniques for helicopter transmission diagnostics,” Journal of Sound and Vibration, vol. 282, no. 1-2, pp. 475–508, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. H. J. Decker, R. F. Handschuh, and J. J. Zakrajsek, “An enhancement to the NA4 gear vibration diagnostic parameter,” Tech. Rep. ARL-TR-389, US Army Research Laboratory, Adelphi, Md, USA, 1994. View at Google Scholar
  31. H. Martin, “Statistical moment analysis as a means of surface damage detection,” in Proceedings of the 7th International Modal Analysis Conference, pp. 1016–1021, Las Vegas, Nev, USA, February 1989.