Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2017 (2017), Article ID 8345704, 22 pages
https://doi.org/10.1155/2017/8345704
Research Article

Diagnosis of Localized Faults in Multistage Gearboxes: A Vibrational Approach by Means of Automatic EMD-Based Algorithm

Engineering Department, University of Ferrara, Via Saragat, 1 I-44122 Ferrara, Italy

Correspondence should be addressed to E. Mucchi; ti.efinu@ihccum.onailime

Received 26 July 2017; Accepted 14 September 2017; Published 30 October 2017

Academic Editor: Rafał Burdzik

Copyright © 2017 M. Buzzoni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. B. Randall, Vibration-Based Condition Monitoring, John Wiley & Sons Ltd, 2011.
  2. J. Antoni and R. B. Randall, “Differential diagnosis of gear and bearing faults,” Journal of Vibration and Acoustics, vol. 124, no. 2, pp. 165–171, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Antoni, “Cyclostationarity by examples,” Mechanical Systems and Signal Processing, vol. 23, no. 4, pp. 987–1036, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Raad, J. Antoni, and M. Sidahmed, “Indicators of cyclostationarity: theory and application to gear fault monitoring,” Mechanical Systems and Signal Processing, vol. 22, no. 3, pp. 574–587, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Barszcz and R. B. Randall, “Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine,” Mechanical Systems and Signal Processing, vol. 23, no. 4, pp. 1352–1365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Dalpiaz, A. Rivola, and R. Rubini, “Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears,” Mechanical Systems and Signal Processing, vol. 14, no. 3, pp. 387–412, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. G. L. McDonald, Q. Zhao, and M. J. Zuo, “Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection,” Mechanical Systems and Signal Processing, vol. 33, pp. 237–255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. G. L. McDonald and Q. Zhao, “Multipoint Optimal Minimum Entropy Deconvolution and Convolution Fix: Application to vibration fault detection,” Mechanical Systems and Signal Processing, vol. 82, pp. 461–477, 2017. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Sharma and A. Parey, “Gear crack detection using modified TSA and proposed fault indicators for fluctuating speed conditions,” Measurement, vol. 90, pp. 560–575, 2016. View at Publisher · View at Google Scholar · View at Scopus
  10. N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings A, vol. 454, no. 1971, pp. 903–995, 1998. View at Publisher · View at Google Scholar · View at MathSciNet
  11. Z. He, Y. Shen, and Q. Wang, “Boundary extension for HilbertHuang transform inspired by gray prediction model,” Signal Processing, vol. 92, no. 3, pp. 685–697, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Hu, S. Peng, and W.-L. Hwang, “EMD revisited: a new understanding of the envelope and resolving the mode-mixing problem in AM-FM signals,” IEEE Transactions on Signal Processing, vol. 60, no. 3, pp. 1075–1086, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  13. N. E. Huang and Z. Wu, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Advances in Adaptive Data Analysis (AADA), vol. 1, no. 1, pp. 1–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J.-R. Yeh, J.-S. Shieh, and N. E. Huang, “Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method,” Advances in Adaptive Data Analysis: Theory and Applications, vol. 2, no. 2, pp. 135–156, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, “A complete ensemble empirical mode decomposition with adaptive noise,” in Proceedings of the 36th IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 4144–4147, Prague, Czech Republic, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. J. Loutridis, “Damage detection in gear systems using empirical mode decomposition,” Engineering Structures, vol. 26, no. 12, pp. 1833–1841, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. J. Loutridis, “Instantaneous energy density as a feature for gear fault detection,” Mechanical Systems and Signal Processing, vol. 20, no. 5, pp. 1239–1253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Cheng, D. Yu, J. Tang, and Y. Yang, “Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis,” Mechanism and Machine Theory, vol. 43, no. 6, pp. 712–723, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Hui, Y. Zhang, and H. Zheng, “Wear detection in gear system using Hilbert-Huang transform,” Journal of Mechanical Science and Technology, vol. 20, no. 11, pp. 1781–1789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Lin and Q. Chen, “Application of the EEMD method to multiple faults diagnosis of gearbox,” in Proceedings of the 2010 IEEE International Conference on Advanced Computer Control, ICACC 2010, pp. 395–399, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. P. Feng, M. Liang, Y. Zhang, and S. M. Hou, “Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation,” Journal of Renewable Energy, vol. 47, pp. 112–126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Zhao, W. Yu, and R. Yan, “Gearbox fault diagnosis using complementary ensemble empirical mode decomposition and permutation entropy,” Shock and Vibration, vol. 2016, Article ID 3891429, 8 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Lei, Z. Liu, J. Ouazri, and J. Lin, “A fault diagnosis method of rolling element bearings based on CEEMDAN,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 231, no. 10, pp. 1804–1815, 2015. View at Publisher · View at Google Scholar
  24. S. Mohanty, K. K. Gupta, and K. S. Raju, “Vibro-acoustic fault analysis of bearing using FFT, EMD, EEMD and CEEMDAN and their implications,” Lecture Notes in Electrical Engineering, vol. 387, pp. 281–292, 2016. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Lei, J. Lin, Z. He, and M. J. Zuo, “A review on empirical mode decomposition in fault diagnosis of rotating machinery,” Mechanical Systems and Signal Processing, vol. 35, no. 1-2, pp. 108–126, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Antoni, F. Bonnardot, A. Raad, and M. El Badaoui, “Cyclostationary modelling of rotating machine vibration signals,” Mechanical Systems and Signal Processing, vol. 18, no. 6, pp. 1285–1314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Braun, “The synchronous (time domain) average revisited,” Mechanical Systems and Signal Processing, vol. 25, no. 4, pp. 1087–1102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Transactions on Signal Processing, vol. 56, no. 1, pp. 85–95, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  29. P. Flandrin, G. Rilling, and P. Gonçalvés, “Empirical mode decomposition as a filter bank,” IEEE Signal Processing Letters, vol. 11, no. 2, pp. 112–114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. H. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Advances in Adaptive Data Analysis (AADA), vol. 1, no. 1, pp. 1–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Lei, Z. He, and Y. Zi, “Application of the EEMD method to rotor fault diagnosis of rotating machinery,” Mechanical Systems and Signal Processing, vol. 23, no. 4, pp. 1327–1338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. A. Colominas, G. Schlotthauer, and M. E. Torres, “Improved complete ensemble EMD: a suitable tool for biomedical signal processing,” Biomedical Signal Processing and Control, vol. 14, no. 1, pp. 19–29, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. M. A. Colominas, G. Schlotthauer, M. a. Torres, and P. Flandrin, “Noise-assisted EMD methods in action,” Advances in Adaptive Data Analysis: Theory and Applications, vol. 4, no. 4, 1250025, 11 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  34. R. B. Randall, “A new method of modeling gear faults,” Journal of Mechanical Design, vol. 104, no. 2, pp. 259–267, 1982. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Dybała and R. Zimroz, “Rolling bearing diagnosing method based on empirical mode decomposition of machine vibration signal,” Applied Acoustics, vol. 77, pp. 195–203, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Assaad, M. Eltabach, and J. Antoni, “Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes,” Mechanical Systems and Signal Processing, vol. 42, no. 1-2, pp. 351–367, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. W. Wang, “Early detection of gear tooth cracking using the resonance demodulation technique,” Mechanical Systems and Signal Processing, vol. 15, no. 5, pp. 887–903, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. G. DElia, Fault detection in rotating machines by vibration signal processing techniques [PhD Thesis], Università degli Studi di Bologna, 2008.
  39. G. Dalpiaz, G. DElia, and S. Delvecchio, “Design of a test bench for the vibro-acoustical analysis and diagnostics of rotating machines,” in in proceedings of The Second World Congress on Engineering Asset Management & The Fourth International Conference on Condition Monitoring, pp. 777–792, Harrogate, UK, 2007.