Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2018 (2018), Article ID 1092812, 8 pages
https://doi.org/10.1155/2018/1092812
Research Article

Multistability in Horizontal Platform System with and without Time Delays

Centre for Nonlinear Dynamics, Defense University, Bishoftu, Ethiopia

Correspondence should be addressed to Karthikeyan Rajagopal

Received 2 September 2017; Revised 25 December 2017; Accepted 11 January 2018; Published 11 February 2018

Academic Editor: José Manoel Balthazar

Copyright © 2018 Karthikeyan Rajagopal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Vaidyanathan and C. Volos, Eds., Advances and applications in chaotic systems, vol. 636 of Studies in Computational Intelligence, Springer, [Cham], 2016. View at MathSciNet
  2. K. Rajagopal, A. Karthikeyan, and P. Duraisamy, “Bifurcation Analysis and Chaos Control of a Fractional Order Portal Frame with Nonideal Loading Using Adaptive Sliding Mode Control,” Shock and Vibration, vol. 2017, Article ID 2321060, 2017. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Sekar and S. Narayanan, “Chaos in mechanical systems - A review,” SADHANA - Academy Proceedings in Engineering Sciences, vol. 20, no. 2-4, pp. 529–582, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. N.-S. Pai and H.-T. Yau, “Suppression of chaotic behavior in horizontal platform systems based on an adaptive sliding mode control scheme,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 1, pp. 133–143, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. C. C. Wang, N. S. Pai, H. T. Yau et al., “Bifurcation Analysis of Horizontal Platform System,” World Academy of Science, Engineering and Technology International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, vol. 4, no. 5, 2010. View at Google Scholar
  6. M. P. Aghababa and H. P. Aghababa, “Synchronization of mechanical horizontal platform systems in finite time,” Applied Mathematical Modelling, vol. 36, no. 10, pp. 4579–4591, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. M. P. Aghababa, “Chaotic behavior in fractional-order horizontal platform systems and its suppression using a fractional finite-time control strategy,” Journal of Mechanical Science and Technology, vol. 28, no. 5, pp. 1875–1880, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Li, Z. Gong, D. Qian, and Y. Chen, “On the bound of the Lyapunov exponents for the fractional differential systems,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 20, no. 1, Article ID 016001CHA, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a time series,” Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285–317, 1985. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. S. Ellner, A. R. Gallant, D. McCaffrey, and D. Nychka, “Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data,” Physics Letters A, vol. 153, no. 6-7, pp. 357–363, 1991. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. A. Maus and J. C. Sprott, “Evaluating Lyapunov exponent spectra with neural networks,” Chaos, Solitons & Fractals, vol. 51, pp. 13–21, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  12. M. S. Tavazoei and M. Haeri, “Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems,” IET Signal Processing, vol. 1, no. 4, pp. 171–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. E. S. Medeiros, S. L. T. de Souza, and I. L. Caldas, “Multistability in Systems with Impacts, International conference on Chaos and Nonlinear Dynamics,” in Proceedings of the Multistability in Systems with Impacts, International conference on Chaos and Nonlinear Dynamics, 2010.
  14. L. Mahadevan and L. Ee Hou Yong, “Statistical Mechanics of Multistability in Microscopic Shells”.
  15. U. Feudel and C. Grebogi, “Multistability and the control of complexity,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 7, no. 4, pp. 597–604, 1997. View at Publisher · View at Google Scholar · View at MathSciNet
  16. S. Kraut, U. Feudel, and C. Grebogi, “Preference of attractors in noisy multistable systems,” Physical Review E, vol. 59, pp. 5253–5260, 1999. View at Google Scholar
  17. S. Kraut and U. Feudel, “Multistability, noise, and attractor hopping: The crucial role of chaotic saddles,” Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, vol. 66, no. 1, Article ID 015207, pp. 015207/1–015207/4, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. J.-P. Richard, “Time-delay systems: An overview of some recent advances and open problems,” Automatica, vol. 39, no. 10, pp. 1667–1694, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Y. Hu and Z. H. Wang, Dynamics of controlled mechanical systems with delayed feedback, Springer Berlin Heidelberg, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  20. A. Stefanski and A. Dabrowski, “Tomasz Kapitaniak, Evaluation of the largest Lyapunov exponent in dynamical systems with time delay, Chaos,” Solitons Fractals, vol. 23, no. 5, pp. 1651–1659, March 2005. View at Publisher · View at Google Scholar
  21. A. Stefanski, T. Kapitaniak, A. Dabrowski, A. Stefański, and A. Dąbrowski, “The Largest Lyapunov Exponent of Dynamical Systems with Time Delay,” in Proceedings of the IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics, G. Rega and F. Vestroni, Eds., vol. 122, p. 122, Springer, Dordrecht, the Netherlands, 2005.
  22. A. Dabrowski, “Estimation of the largest Lyapunov exponent-like (LLEL) stability measure parameter from the perturbation vector and its derivative dot product (part 2) experiment simulation,” Nonlinear Dynamics, vol. 78, no. 3, pp. 1601–1608, 2014. View at Publisher · View at Google Scholar · View at Scopus