Table of Contents Author Guidelines Submit a Manuscript
Shock and Vibration
Volume 2018, Article ID 3732746, 10 pages
https://doi.org/10.1155/2018/3732746
Research Article

Global Sensitivity Analysis of the Vibration Reduction System with Seated Human Body

Department of Mechatronics and Applied Mechanics, Faculty of Technology and Education, Koszalin University of Technology, Sniadeckich St. 2, Koszalin 75453, Poland

Correspondence should be addressed to Igor Maciejewski; lp.nilazsok.ut@ikswejeicam.rogi

Received 2 March 2018; Accepted 5 July 2018; Published 26 July 2018

Academic Editor: Stefano Marchesiello

Copyright © 2018 Igor Maciejewski and Tomasz Krzyzynski. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The paper deals with the global sensitivity analysis for the purpose of shaping the vibroisolation properties of suspension systems under strictly defined operating conditions. The variance-based method is used to evaluate an influence of nonlinear force characteristics on the system dynamics. The proposed sensitivity indices provide the basis for determining the effect of key design parameters on the vibration isolation performance. The vibration transmissibility behaviour of an exemplary seat suspension system is discussed in order to illustrate the developed methodology.

1. Introduction

A selection process of the system dynamic properties is difficult due to a presence of the conflicted vibroisolation criteria [1]. In the case of an ideal system isolation, vibration amplitude of the isolated body is equal to zero (Figure 1(a)) and the human vibrations are perfectly dissipated by a suspension system. Unfortunately, in such a situation, the relative displacements of the suspension system are considerably large, and they are the same as the input vibration . In an extreme case, the recommended deflection limitation requires the suspension travel equal to zero (Figure 1(b)). Then, the isolated body oscillates with the vibration amplitude equal to the input vibration and endangers driver’s health [2].

Figure 1: Conflicted requirements for the vibroisolating properties: ideal reduction of the body vibration (a); ideal limitation of the suspension travel (b).

There are a lot of design parameters having an influence on the system dynamics [3, 4]. Usually, not very effective design process is related to a significant number of the decision variables that affect the vibroisolation properties of the suspension system [5, 6]. Global sensitivity analysis is a tool frequently used to explore how the variations in the model outputs can be attributed to variations of the model inputs [7]. Such an analysis can be applied in order to investigate the relative influence of model parameters on the system performance and also for the purpose of evaluating the dominant controls of a system (model). The process of determining the impact of input factors on system evaluation criteria is proposed further in this paper.

The fundamental method of evaluating the effectiveness of vibration reduction system is to perform an experiment in the laboratory [8, 9]. Unfortunately, the duration of the test and its high cost are the important aspects when the test must be performed repeatedly for different design parameters of the system. Therefore, the authors of the following paper recommend to carry out a simulation experiment based on a mathematical model of the vibration isolation system. In traditional experimental designs, the effect of input factors is customarily estimated over two levels, that is, at the lower and upper bounds [10]. Unlike the traditional design’s analysis, the variance-based method takes into account the whole input space using the Monte Carlo method [11]. Thus, the variance-based method can measure the nonlinear effects of individual input factors and allows to estimate the effect of interactions in nonadditive systems [12].

In this paper, an original methodology of shaping the vibroisolation properties is presented for the purpose of improving the suspension dynamics. The proposed iterative procedure supports analysing the nonlinear system characteristics that yield a desirable vibration response in view of the conflicted requirements for modern vibration reduction systems.

2. Global Sensitivity Analysis

2.1. Sample Matrix

The sample matrix has to be generated with respect to the probability distributions of the input factors. Using a uniform random number generator (), the initial starting points for sensitivity analysis may be expressed as follows:where is the number of rows in the matrix that indicates the number of simulation runs required. The number of columns is the doubled number of input factors to be analysed. The resulting sample matrix takes the following form:where and are the sample matrices which consist of two independent starting points in the -dimensional unit hypercube.

The higher number of N samples contributes to a better estimation of sensitivity indices [13]. Two-dimensional representation of uniformly distributed random starting points at different number of samples is presented in Figure 2.

Figure 2: Two-dimensional representation of uniformly distributed random starting points at different numbers of simulation runs: (a) and (b).
2.2. Variance-Based Method

The variance-based method uses randomly generated starting points in order to calculate the output variances decomposed into fractions that can be attributed to the system inputs [14]. The method is based on the combination of two independent sampling matrices and (2) in such a way that the recombined matrices contain the elements of matrix except the jth column which is taken from matrix . The resulting matrices are determined as follows:

The model outputs should be calculated for each design point in the , , and matrices; therefore, a total of model evaluations are required. The corresponding model outputs should be saved by using the following vectors:

The output vectors: ; ; and consists of numerically calculated system evaluation criteria that are obtained for the ith set of initial starting points.

2.3. Sensitivity Indices

Sensitivity analysis is performed in the basis of the first-order sensitivity index and the total effect index . The first-order sensitivity index () indicates the main effect of model output variance relating to the jth input factor; however, the total effect sensitivity index () includes the higher order effects as the sum of the first, second, third order effects, and so on [13]. According to Saltelli [11], the first-order sensitivity index and the total effect sensitivity index can be estimated by using the following expressions:where and are the model outputs calculated using independent sets of initial starting points and is also the model output but calculated in the basis of recombined sets of initial starting points (Section 2.2). Expected value of model outputs can be estimated by using the arithmetic mean in the following form [11]:where is the number of simulation runs.

2.4. Block Diagram for the Sensitivity Analysis of Vibration Reduction Systems

In order to analyse the vibroisolation properties of vibration reduction systems, the global sensitivity analysis is employed. By using such analysis, the relative importance of input factors with respect to the model output should be quantified to identify the key model parameters that affect the system performance significantly. The variance-based method [13] is used in the presented study because such a method is suitable for nonlinear models that are generally used to describe a specific vibroisolation process realized by the system [15]. Block diagram for the sensitivity analysis of vibration reduction systems is presented in Figure 3.

Figure 3: Block diagram for the sensitivity analysis of vibration reduction systems.

Based on both the selected number of simulation runs and the double number of input factors to be analysed, the matrix of initial starting points should be generated by using a uniform random number generator (Section 2.1). Then, the resulting sample matrix has to be divided into two separated matrices and of the same size () that include two independent sets of initial starting points. Additionally, the recombined matrices must be created in such a way that these matrices contain the elements of matrix except the jth column which is taken from matrix . Further analysis requires model calculations by using a computer simulation. The corresponding model outputs have to be stored as the following vectors: , , and . When all of the model outputs are iteratively evaluated, then the sensitivity indices shall be estimated. The first-order sensitivity index and the total effect sensitivity index are calculated using (5)–(7), and the obtained results can be used to provide a reliable ranking of the input factors.

3. Example: Sensitivity Analysis of the Horizontal Seat Suspension

3.1. Model of the System

In Figure 4, the physical model of the horizontal seat suspension with seated human body is shown. The object of vibration isolation is assumed as a lumped mass body which consists of three interconnected masses by means of linear springs and dampers [16]. The first equivalent mass is employed for modeling the upper part of the frame equipped with a cushion on which the person sits. The second and third masses are used to model the human body parts that are in contact () and without contact () with the back support. The equivalent stiffness and damping coefficients are utilized to determine viscoelastic characteristics of the human body part to be in contact with the back support, while the stiffness and damping coefficients define biodynamic response of the human body part that is not in contact with the back support. Finally, the equivalent stiffness and damping coefficients are used to express the reactions transmitted through hands on the steering wheel.

Figure 4: Physical model of the passive horizontal seat suspension with seated human body.

Such a simple 3-DOF model is extensively discussed in the literature [16] and captures many essential characteristics of the system—seated human body and cushioned seat. The displacements , , and represent the movement of elements contained in the biomechanical model of a human body. The mechanical vibrations are generated by using kinematic excitation of the system.

A set of three independent equations of motion is formulated in the matrix form:where is the displacement vector of the isolated body; , , and are the inertia, damping, and stiffness matrices, respectively; and is the vector of applied forces describing the nonlinear vibration isolator.

The diagonal inertia matrix represents the masses of each element contained in the human body model as follows:

The damping and stiffness matrices are symmetric, and they are defined for a specific direction of the vibration exposure:

The human body model parameters, that is, body masses: , , and , damping coefficients: , , and , and stiffness coefficients: , , and , have been identified for the seated human body with cushioned seat system and backrest contact in the lumbar region [16].

The vectors describing the human body displacements and applied forces are presented in the following form:

The mathematical models of the basic forces in the system, that is, the spring force , the force from end-stop buffers , the force of hydraulic shock absorber , and the overall friction force of suspension system , have been shown in the author’s previous paper [17]. In this paper, similar model has been formulated and experimentally verified for the purpose of optimizing the vibroisolation properties of horizontal seat suspension. The present paper concerns a global sensitivity analysis; therefore, another scientific problem is discussed. However, a novel research methodology is applied for a specific seat suspension system in order to investigate the relative influence of nonlinear force characteristics on the system dynamics.

3.2. Input Factors

An influence of nonlinear force characteristics of the conservative (, ) and dissipative (, ) elements is investigated for chosen excitation signals. The following forces as functions of the system relative displacement or velocity are taken into account:(i)Spring force (ii)Force from the end-stop buffers (iii)Force of the hydraulic shock absorber (iv)Overall friction force .

In order to enable adjusting the force characteristics of the horizontal seat suspension, the input factors and their ranges are defined as the set of important design parameters:(i)Wire diameter of the helical springs (ii)Linear stiffness coefficient of the end-stop buffers (iii)Cubic stiffness coefficient of the end-stop buffers (iv)Orifice diameter of the shock absorber (v)Orifice length of the shock absorber (vi)Reduction ratio of the friction force .

Individual characteristics of the viscoelastic elements included in horizontal seat suspension are presented in Figure 5. The helical springs can be modified by means of the wire diameter , so its stiffness characteristic can be changed (Figure 5(a)). The stiffness characteristics of end-stop buffers can be also adjusted using the linear (Figure 5(5)) and cubic (Figure 5(c)) stiffness coefficients. A change of the damping characteristics in the velocity domain is also possible by modifying the circular orifice inside the shock absorber. Changing the orifice diameter allows to adjust the value of damping force (Figure 5(d)), and the orifice length influences the nonlinear shape of damping characteristics (Figure 5(e)). Furthermore, the friction force of the suspension system can be modified by using the reduction ratio (Figure 5(f)).

Figure 5: Force characteristics of the helical spring for different wire diameter (a), force characteristics of the end-stop buffer for different linear stiffness coefficient (b), force characteristics of the end-stop buffers for different cubic stiffness coefficient (c), force characteristics of the shock absorber for different orifice diameter (d), force characteristics of the shock absorber for different orifice length (e), and friction force for different reduction ratio (f).
3.3. Model Outputs

The conflicted vibroisolation criteria [18], which correspond to the model outputs in this paper, provide a simple numerical assessment of the suspension system efficiency. For the purpose of evaluating the vibroisolation properties of vibration reduction systems, the following indicators are chosen:(i)Frequency-weighted transmissibility factor (ii)Suspension travel .

At first, the frequency-weighted transmissibility factor is defined in order to evaluate the effectiveness of the vibration reduction system:where is the frequency-weighted root mean square value of the isolated body acceleration for the longitudinal x direction and is the frequency-weighted root mean square value of the input acceleration. The frequency weightings defined in ISO-2631 [19] have to be used for the purpose of calculating the frequency-weighted accelerations.

For further approach, the suspension travel is a simple numerical assessment of the system performance as well [1]. The suspension travel is defined as the measure of distance from the bottom to the top of suspension stroke using the following relation:where is the displacement of the isolated body for the longitudinal x direction, is the displacement of the input vibration, is the current time instant, and is the observation time.

3.4. Simulation Results

The sensitivity analysis is performed by using the simulation model of the horizontal suspension system. The simulations are performed for the excitation signals that are similar to the white noise, band-limited noise. These excitation signals are obtained using a signal generator with the random wave form. Spectral characteristics of normally distributed random signals are subsequently formed by the Butterworth filters: high-pass (HP) and low-pass (LP) filters in a specific frequency range. Simulated power spectral densities of the input vibration at different excitation intensities are presented in Figure 6. Numerical values of the cutoff frequencies and filter orders are presented in Table 1.

Figure 6: Power spectral densities of the simulated input vibration (solid line) at different intensities: WN1x (a), WN2x (b), and WN3x (c) and their tolerances (dashed line).
Table 1: Numerical values of the cutoff frequencies and filter orders for the input vibration at different excitation intensities: WN1x, WN2x, and WN3x.

The first-order and total effect sensitivity indices ((5) and (6)) of transmissibility factor and suspension travel are calculated for chosen input vibrations, that is, WN1x, WN2x, and WN3x. According to the results obtained by using the variance-based method (Figure 7), the friction force (input factor ) demonstrates the greatest influence on the system dynamics for most of the excitation signals. Less influence of the suspension friction is observed for signal WN3x with relatively high amplitudes of the input vibration. In the case of such a signal, the damping force (input factor ) is dominant; therefore, the sensitivity indices achieve substantial values. Stiffness characteristics of the end-stop buffers (input factors and ) point out the lowest influence on the system vibroisolation properties for each excitation intensities. An undesirable end-stop impact in a suspension seat occurs only occasionally; therefore, the suspension stroke is sufficient for the considered excitation signals.

Figure 7: First-order () and total effect () sensitivity indices of transmissibility factor for different input vibrations: WN1x (a), WN2x (c), and WN3x (e); first-order () and total effect () sensitivity indices of suspension travel for different input vibrations: WN1x (b), WN2x (d), and WN3x (f).

Transmissibility functions of the horizontal seat suspension at various system configurations are presented in Figure 8. The presented dynamic behaviour of the system under examination corresponded well to the sensitivity indices that are calculated by using the variance-based method. This evidently proves that the proposed sensitivity analysis is correctly formulated and yields the desired overview of nonlinear system dynamics for strictly defined operating conditions.

Figure 8: Transmissibility functions of the horizontal seat suspension at different input factors: wire diameter of the helical springs (a), linear stiffness coefficient of the end-stop buffers (b), cubic stiffness coefficient of the end-stop buffers (c), orifice diameter of the shock absorber (d), orifice length of the shock absorber (e), and reduction ratio of the friction force (f).

4. Conclusions

In this paper, an effective procedure of analysing the vibroisolation properties of vibration reduction systems is proposed. The global sensitivity analysis is applied to determine the sensitivity of evaluation criteria to the design parameters by means of which the correct system configuration can be found. The developed variance-based method is suitable to analyse an influence of the nonlinear force characteristics and allows to estimate the sensitivity indices based on the conflicted vibroisolating criteria, that is, the frequency-weighted transmissibility factor and suspension travel. The correctness of the proposed procedure is evaluated by using the exemplary horizontal seat suspension that is exposed to random vibration at different excitation intensities.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was part of the research project “Methods and procedures of selecting vibro-isolation properties of vibration reduction systems” funded by the National Science Center of Poland under the Contract no. UMO-2013/11/B/ST8/03881.

References

  1. I. Maciejewski, L. Meyer, and T. Krzyzynski, “Modelling and multi-criteria optimisation of passive seat suspension vibro-isolating properties,” Journal of Sound and Vibration, vol. 324, no. 3–5, pp. 520–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Official Journal of the European Communities, pp. 13–18, 2002, Directive 2002/44/EC of the European Parliament and of the Council on the Minimum Health and Safety Requirements Regarding the Exposure of Workers to the Risks Arising from Physical Agents (Vibration; 16th Individual Directive within the Meaning of Article 16(1) of Directive 89/391/EEC).
  3. W. Sextro, K. Popp, and T. Krzyzynski, “Localization in nonlinear mistuned systems with cyclic symmetry,” Nonlinear Dynamics, vol. 25, pp. 207–220, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Krzyzynski, K. Popp, and W. Sextro, “On some regularities in dynamic response of cyclic periodic structures,” Chaos Solution and Fractals, vol. 11, no. 10, pp. 1597–1609, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Konieczny, J. Kowal, and W. Raczka, “Optimal control of slow-active vehicle suspension–results of experimental data,” Journal of Low Frequency Noise Vibration and Active Control, vol. 32, no. 1-2, pp. 99–116, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Nabaglo, J. Kowal, and A. Jurkiewicz, “Construction of a parametrized tracked vehicle model and its simulation in MSC.ADAMS program,” Journal of Low Frequency Noise Vibration and Active Control, vol. 32, no. 1-2, pp. 167–173, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Pianosi, F. Sarrazin, and T. Wagener, “A Matlab toolbox for global sensitivity analysis,” Environmental Modelling and Software, vol. 70, pp. 80–85, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. International Organization for Standardization, Earth-Moving Machinery–Laboratory Evaluation of Operator Seat Vibration, ISO, Geneva, Switzerland, 2000.
  9. I. Maciejewski, S. Glowinski, and T. Krzyzynski, “Active control of a seat suspension with the system adaptation to varying load mass,” Mechatronics, vol. 24, no. 8, pp. 1242–1253, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Dejaegher, X. Capron, J. Smeyers-Verbeke, and Y. Vander Heyden, “Randomization tests to identify significant effects in experimental designs for robustness testing,” Analytica Chimica Acta, vol. 564, no. 2, pp. 184–200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Saltelli, “Making best use of model evaluations to compute sensitivity indices,” Computer Physics Communications, vol. 145, no. 2, pp. 280–297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Saltelli and P. Annoni, “How to avoid a perfunctory sensitivity analysis,” Environmental Modeling and Software, vol. 25, no. 12, pp. 1508–1517, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. E. G. Goh and K. Noborio, “Sensitivity analysis using sobol variance-based method on the Haverkamp constitutive functions implemented in Richards water flow equation,” Malaysian Journal of Soil Science, vol. 18, pp. 19–33, 2014. View at Google Scholar
  14. A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola, “Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index,” Computer Physics Communications, vol. 181, no. 2, pp. 259–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Zhou, H. Lin, and H. Lin, Global Sensitivity Analysis, Encyclopedia of GIS, Springer-Verlag, Berlin, Germany, 2008.
  16. G. J. Stein, P. Muka, R. Chmurny, B. Hinz, and R. Bluthner, “Measurement and modelling of x-direction apparent mass of the seated human body–cushioned seat system,” Journal of Biomechanics, vol. 40, no. 7, pp. 1493–1503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Maciejewski, T. Krzyzynski, L. Meyer, and H. Meyer, “Shaping the vibro-isolation properties of horizontal seat suspension,” Journal of Low Frequency Noise, Vibration and Active Control, vol. 36, no. 3, pp. 203–213, 2017. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Maciejewski and T. Krzyzynski, “Method of selecting vibro-isolation properties of vibration reduction systems,” Journal of Mechanical Science and Technology, vol. 30, no. 4, pp. 1497–1505, 2016. View at Publisher · View at Google Scholar · View at Scopus
  19. International Organization for Standardization, Mechanical Vibration and Shock–Evolution of Human Exposure to Whole Body Vibration, ISO, Geneva, Switzerland, 1997.