Research Article  Open Access
Qianqian Xu, Kai Liu, "A New Feature Extraction Method for Bearing Faults in Impulsive Noise Using Fractional LowerOrder Statistics", Shock and Vibration, vol. 2019, Article ID 2708535, 13 pages, 2019. https://doi.org/10.1155/2019/2708535
A New Feature Extraction Method for Bearing Faults in Impulsive Noise Using Fractional LowerOrder Statistics
Abstract
According to the performance degradation problem of feature extraction from higherorder statistics in the context of alphastable noise, a new feature extraction method is proposed. Firstly, the nonstationary vibration signal of rolling bearings is decomposed into several product functions by LMD to realize signal stability. Then, the distribution properties of product functions in the time domain are discussed by the comparison of heavy tails and characteristic exponent estimation. Fractional lowerorder pfunction optimization is obtained by the calculation of the distance ratio based on Kmeans algorithms. Finally, a fault feature dataset is established by the optimal FLOS and lowerdimensional mapping matrix of covariation to accurately and intuitively describe various bearing faults. Since the alphastable noise is effectively suppressed and state described precisely, the presented method has shown better performance than the traditional methods in bearing experiments via fractional lowerorder feature extraction.
1. Introduction
Accurate condition monitoring of the key equipment parts is the main objective of intelligent diagnosis. As the most common and vulnerable support components of rotating machinery, rolling bearings have become the major monitoring objects. Therefore, feature extraction of bearing signals is a decisive factor for intelligent monitoring and diagnosis at present [1, 2].
The dynamic parameters, such as the driving force, damping force, and elastic force of the mechanical system, always demonstrate the nonlinear variation signals, especially during the emergency stage of equipment failure. Their vibration signals are nonGaussian and nonstationary. Meanwhile, the complexity of institutions makes serious superimposing problems and same frequency interference phenomenon. Thus, the frequency of test signals is difficult to match the faulty frequency.
Aiming at this problem, the adaptive timefrequency analysis method is becoming the research hotspot of the existing vibration signal processing methods [3–5]. By further studying the relevant literatures, we have summarized the main types of traditional features. They include dimensionless parameters and various entropy values in the time domain [6–10], spectrum analysis in the frequency domain [11–14], and adaptive timefrequency analysis in the timefrequency domain [3, 15].
However, the conventional feature statistics usually ignores the distributing models of the adaptive signal components in engineering practice. For example, variance and highorder statistics of signal components are unbounded under alphastable noise conditions. Based on this finite statistics, the statistics mentioned above would show degradation performance of state description [16, 17].
Therefore, a new feature extraction method is introduced in this paper. The alphastable distribution model and signal processing method LMD are introduced in Sections 2 and 3. On the basis of further investigation of signal component distribution in Section 4, a new feature extraction method in fractional lower order is proposed in Section 5 and comparative analysis in Sections 6 and 7. Section 8 presents the analysis of computational complexity.
This new approach has three steps: First, LMD is chosen as the decomposition method of the nonstationary signals to achieve signal stability. Then, the signal pulse of the alphastable noise is effectively reduced by the optimal FLOS and lowerdimensional mapping matrix. Finally, the classification and identification of various faulty bearings are carried out precisely and intuitively. This new method solves the inaccurate description problem of various states in traditional methods by avoiding the infinite variance hypothesis.
2. Fractional LowerOrder AlphaStable Distribution
The alphastable distribution is an essential part of the nonGaussian random distribution. The most striking characteristic is many samples far away from the mean value or the median, resulting in more peak pulses on the waveform in the time domain and thicker algebraic tails of those curves of probability density function [18, 19].
Having four parameters, including characteristic exponent , symmetry parameter , dispersion , and location parameter , the impulsive signal could be conveniently depicted by the characteristic function [20]:where
The degree of the pulse characteristics is decided by characteristic exponent . The smaller the value of , the thicker the tails and the stronger the signal pulse. Figure 1 shows different curves with different values of . Gaussian distribution is the limiting case with , when ; in addition, when , the random variable is said to have fractional lowerorder alphastable distribution, including Cauchy distribution (, ) and Pearson distribution (, ).
Undoubtedly, it is impossible that the probability density function of fractional lowerorder alphastable signals has the same convergence property of Gaussian signals. Because of the property of , signal variance is divergent. This is the basic reason for degradation performance of state description and the difficulty of intelligent monitoring of mechanical equipment.
In recent years, the alphastable noise and FLOS processing methods have shown better performance than the traditional methods. As a hottest research topic in the field of signal processing, FLOS processing methods have more extensive applicability in the processing of underwater sound, radar signals, and speech signals, time delay estimation, and biomedicine domain, for example, a new diagnosing method of noisy Greek folk music excerpts based on the alphastable noise assumption [21], description of various faulty bearing statuses through alphastable parameters and kurtosis values [22], a novel fault diagnosis model for axle box bearings based on symmetric alphastable distribution feature extraction and LSSVM [23], the LOD fractional lower order matched filters and improved local optimum detector [24], and analytical parameter estimation by a hierarchical framework based on the skewed alphastable characteristic function [25].
3. Nonstationary Signal Processing
Local mean decomposition (LMD) is an adaptive timefrequency analysis method. LMD could solve the shortcomings of traditional methods: the false timefrequency information from the fixed basis functions, a great deal of calculation from the multiparameter optimization, the Heisenberg limitation in the timefrequency domain, and the overenvelope and underenvelope problems of the EMD method. Thus, LMD has potential application in bearing signal processing, becoming the research hotspot of the existing adaptive timefrequency analysis methods [26–30].
LMD could decompose a vibration signal into a series of components and remainders through three loops:
Signal components represent the main frequency components of . Combining with the maximum kurtosis criterion, is often chosen as the main feature of the faulty bearings, which may imply abundant bearing fault state information [31].
To a certain extent, the LMD algorithm transforms the feature extraction problem of nonstationary signals into that of stationary components, increasing the description accuracy and reliability of various equipment states.
4. Analysis of TimeDomain Distribution Characteristics
However, when the noise is impulsive and modeled as a nonGaussian process, variance and second and higherorder statistical characteristics of are infinite. This may reduce the accuracy and reliability of above statistics for the description of equipment states.
In order to investigate the distribution characteristics of bearing vibration signals, Yu et al. had contrasted the validity of the proposed statistical models [32]. It can be concluded that the alphastable distributed model is sufficient to thoroughly describe the statistical characteristics of faulty bearing signals with impulsive behaviors. In this paper, we have researched the noisereducing ability of LMD in terms of tail heaviness and characteristic exponent values of PF components.
4.1. Analog Vibration Signals
Vibration signal model of bearings (with the outer race fixed) is [33]where is the frequency of the rolling ball passing through the inner race, is the rotational frequency, is the modulation ration, and is the added noise. When the characteristic exponent is , becomes the Gaussian noise. Assuming , , , , and , we establish the vibration signals and under alphastable noise and Gaussian noise, respectively.
The vibration signals and are processed through the LMD algorithm to calculate the frequency function PDF of . Figure 2 shows the comparison of PDF tail heaviness.
(a)
(b)
(c)
It is clear that of has more evident pulse characteristics and thicker algebraic tails than that of . This phenomenon proves the fact that LMD cannot effectively deal with the alpha distributed noise. The PDF tail still shows the characteristics of alpha distribution. Therefore, the adaptive timescale decomposition of vibration signals exhibits a performance degradation problem.
4.2. Actual Vibration Signals
SKF62052RS bearing database from Case Western Reserve University is used as an example to study the distribution properties of the practical bearing signal component . This database includes normal bearings and faulty bearings with three faulty degrees ((a) 0.178 mm, (b) 0.356 mm, and (c) 0.533 mm): (A) normal condition, (B) rolling ball fault, (C) inner race fault, and (D) outer race fault. We record this database as , where represents the fault state with the fault size . It is clear that and . In this test, the rotational frequency , the sampling frequency , the sample length , and the number of samples .
The most striking characteristic of the alphastable distributed signals is more peak pulses in the time domain and thicker algebraic tails of probability density function . As shown in Figure 3, the dotted lines present the PDF tail heaviness of faulty bearing components and the full lines of Gaussian components (with the same parameters except characteristic exponents ). It can be seen that the PDF curve of normal bearings has a thicker tail than the Gaussian curve, meaning that the background noise obeys the fractional lowerorder alpha distribution. In this context, both the faulty vibration signals display the same characteristics, including rolling ball fault, inner race fault, and outer race fault.
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
Furthermore, the mean values of characteristic exponents of components are estimated by the Koutrouvelis regression method, as shown in Table 1 [34]. It can be seen that the corresponding characteristic exponents of the bearings are distinguished obviously. The value of rolling ball fault is in the range of 1.61–1.99, the inner race fault is in 1.43–1.53, and the outer race fault, except for samples, is in 1.01–1.2. This phenomenon basically accords with the change law of PDF tails in Figure 3.

Figure 3 and Table 1 could easily prove the following:(1)There is no doubt that the alphastable distributed noise exists in the vibration signals under both normal and fault conditions.(2)When the noise is impulsive and modeled as a nonGaussian process, components fail to describe the vibration signals accurately, which has been a major drawback to the use of LMD.
Therefore, using the fractional lowerorder features is more adaptive than the conventional second and higherorder statistical moments to describe various signal states, effectively avoiding the invalid hypothesis.
5. Fractional LowerOrder Characteristics of Bearing Vibration Signals
Due to the impulsive noise and the nonstationary property, a fractional lowerorder feature extraction method is introduced in this study. This new method adopts LMD to realize signal stability and obtains signal components with impulsive characteristic in the time domain. Then, the alphastable noise is weakened by the optimal fractional lowerorder statistics (FLOS) and lowerdimensional mapping matrix. Finally, the feature matrix is constructed to effectively suppress the impulsive noise and accurately describe the equipment operational conditions. The algorithm flow is as follows (Figure 4).
5.1. The Optimal FLOS
Unlike most statistical models, the stable distribution does not have closedform probability density functions, except for a few known cases. In terms of the theory of alphastable distribution, the random variable does not have finite second or higherorder moments, when its statistic order is less than the value of characteristic exponent . The formula of FLOS iswhere is the gamma function and .
From formula (5), the selection of parameter directly affects the estimation of FLOS, which is important for bearing state monitoring. In this paper, the optimal order value selection method is based on “maximum class separation distance and minimum intraclass distance.” First, we calculate FLOS with different values to be the eigenvalue of each sample, described as
The range of is and is . Here, is the number of sample groups and is the number of state types. Then, the best clustering center of each state type is obtained by the Kmeans clustering algorithm. Finally, we could calculate the distance between and in order to obtain the class separation distance and intraclass distance of each sample. At last, the optimal order could be selected by the maximum distance ratio .
5.2. LowerDimensional Mapping Matrix of Covariation
According to the infinite variance of alphastable signals, Miller put forward the concept of covariation in 1978. For the random variables and of simultaneous distribution, the covariation of variables and is given by formula (7), with characteristic exponents and dispersion coefficient :
Under certain conditions, the validity is similar to the covariance of the random variables of Gaussian signals, which could strengthen the common components of the signals to a certain extent. For the highdimensional covariant matrix, the Laplacian eigenmaps algorithm is used to carry out the lowerdimensional mapping matrix. LE is suitable for nonlinear feature mining and dimensionality reduction of highdimensional data, based on the principle that “the weight of the connection edge between the subgraphs is as low as possible and the weight of the connection edge in the subgraph is as high as possible.” Finally, it could easily realize the optimal embedding of highdimensional manifolds by the mapping theory.
If there is an edge connection between the ith node and the jth node , the weight of the edge determined by the thermonuclear method is as follows:
The Laplace matrix is constructed by . If the constructed nearest neighbor graph is connected, the problem of finding lowerdimensional embedding can be reduced to solve the generalized eigenvector problem:where is a diagonal weight matrix which satisfies . The lowdimensional embedded coordinate consists of the eigenvectors , corresponding to the minimum eigenvalues. The target dimension is determined by the number of fault types [35, 36].
6. Feature Accuracy Comparisons
Take the SKF62052RS bearing signals as an example to compare the fractional lowerorder features proposed in this paper with the multidimensional features in reference [30]. In reference [30], the same bearing signals, SKF62052RS bearing signals from the Case Western Reserve University Bearing Data Center, were processed by the same method LMD. Then, 23 conventional features such as variance, skewness, and kurtosis were considered to describe the status of bearings. As we know, they belong to second and highorder statistics. The difference between reference [30] and this paper is the calculation of mapping matrix of . They are calculated from 23dimensional timedomain characteristics in reference [30] and fractional loworder features proposed in this paper, respectively. Faulty bearing samples are divided into 6 groups in Table 2.

The range of parameter p is determined according to the minimum value of . Take the variation of as 0.1 and calculate the ratio value of . As shown in Table 3, the maximum ratio is 319.68 when the value .

The covariation matrices of components are calculated according to formula (7). Taking to be the input matrix, we construct the Laplace characteristic matrix to enhance the fault components. Thus, we could obtain the lowerdimensional mapping matrix of each type of samples.
The characteristic 3D matrix is formed by and matrices. The scattered plots are drawn in threedimensional spaces with the feature matrix as the x, y, and z coordinate. Figure 5 shows the 3D scattered plots from 23dimensional features in reference [30], except for the normal samples . Figure 6 shows fractional lowerorder features proposed in this paper. Lowercase roman letters (a)–(f) represent sample groups 1–6, respectively. Through 3D scattered plot comparisons of 6 fault sets between Figures 5 and 6, the effect of these two methods is quantified, respectively. There are some conclusions for different types of faulty bearings as follows:(1)The extracted features are constructed by just two types of statistics which are much fewer than those in reference [30].(2)These fault set samples are absolutely separated by the new features. It is proved that the fractional lowerorder feature extraction proposed in this paper is more accurate for different state descriptions.
(a)
(b)
(c)
(d)
(e)
(f)
(a)
(b)
(c)
(d)
(e)
(f)
7. Feature Extractions of Form Roller Bearings
Offset printing press is a piece of highprecision industrial equipment that is designed to reproduce text and image at a high rate of speed and low cost. Accurate ink transfer is completed through the inking system and threecylinder printing system. Form rollers ensure that the ink will uniformly overprint the image area of the plate. When their supporting bearing fails, it may cause oversize printing dots and inferior quality. Figure 7 shows different states of 6001 bearings. We had processed the inner race fault and outer race fault by line cutting. The fault sizes are 0.1 mm and 0.3 mm.
(a)
(b)
(c)
(d)
LMS test lab system is used to test and store the vibration signals of 6001 bearings (with the outer ring fixed). The model of acceleration sensors is PCB 333B30 (range is ±50 g and sensibility is 99.3 mV/g). In this real test, the rotational frequency of the form roller , the sampling frequency , the sample length , and the number of samples .
PDF curve comparison of normal and faulty signal components is shown in Figure 8. Table 4 shows the mean estimation of characteristic exponent . It could easily prove that the alphastable distributed noise exists in the vibration signals of form rollers, and signal components yield the fractional lowerorder alphastable distribution.
(a)
(b)
(c)
(d)
(e)

In order to fully compare and analyze the characteristics of each sample, these five kinds of bearing samples are divided into four groups in Table 5. Then, the optimal FLOS and mapped covariation matrices are calculated by algorithm flow in Figure 4 and formulas (5)–(9). Finally, fractional lowerorder features are constructed to classify different fault types through 3D scattered plots. Figures 9 and 10 show the 3D scattered plots of the mapping matrix from 23dimensional features in reference [30] and fractional lowerorder features proposed in this paper. Lowercase roman letters (a)–(d) represent sample groups 1–4, respectively. In consideration of chaotic and rambling form bearing samples in Figure 9, the traditional feature extraction method degrades obviously in actual equipment status monitoring. On the contrary, with fractional lowerorder noise suppressed by the new method in Figure 10, this vibration samples are distinguished much clearer in the threedimensional space.

(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)
8. Analysis of Computational Complexity
Tables 6 and 7 show the computational complexity of programs. represents the time complexity of each algorithm. Here, is the length of parameter with the variation as 0.1. is the iteration number of clustering centers. is the complexity of distance calculation. is the complexity of the LE program in the reference, which has changed the dimension from 23 to 3. In a parallel manner, represents the complexity of dimensional optimization from to 2 via the LE program. It is obvious that and . The running time is almost three times that of the comparison method in reference [30]. This phenomenon indicated that the proposed method is more complex.


Significantly, this paper focuses on the description accuracy of bearing status. Figures 5 and 6 have shown the advantages of the proposed method in terms of description accuracy. Then, monitoring people could autonomously choose the adequate method according to time tolerance or description accuracy.
9. Conclusions
In this paper, a kind of fractional lowerorder feature extraction method is specifically introduced so as to solve the degradation problem of conventional methods. According to the optimal FLOS and lowdimensional mapping matrix, the equipment operational conditions are described precisely and effectively.
The proposed method is validated by the bearing samples, and the results demonstrated the following:(1)The mixed vibration signal of the operation is an important class of stable distributed signals. On the basis of the aforementioned fact, the signals of faulty bearings, including rolling ball fault, inner race fault, and outer race fault, yield the characteristics of alphastable distribution.(2)When the noise is impulsive and modeled as a nonGaussian process, the LMD algorithm does not process the vibration signals effectively for impulsive noise still existing in PF components. Especially in the actual equipment statusmonitoring process, the noise interference in conventional methods becomes more obvious.(3)The improved performance is clearly demonstrated both theoretically and experimentally. In comparison with traditional methods related to Gaussian models, fractional lowerorder features make more accurate description of bearings status. Monitoring people could autonomously choose the adequate method according to time tolerance or description accuracy.
This new method gives more insight into the distribution characteristics of the adaptively decomposed PF components. The present work could be applied to feature extraction of all signal components, and it would provide a certain theoretical support for further study of intelligent monitoring and diagnosis of the whole machine.
Data Availability
Data related to this paper have been given in Supplementary Materials. The SKF62052RS bearing fault database from Case Western Reserve University is from “http://csegroups.case.edu/bearingdatacenter/home.” Form roller bearing vibration data are from the offset printing press PZ650.
Conflicts of Interest
The authors declare that they have no conflicts of interest regarding the publication of this paper.
Acknowledgments
This work was supported by the National Natural Science Foundation of China (No. 51275409), the National Science Foundation for Young Scientists of China (No. 51305340), and the Natural Science Project of Shaanxi Provincial Department of Education (No. 17JK0545).
Supplementary Materials
Supplementary materials contain bearing vibration signals used in the paper. (1) The folder named “SKF62052RS bearing fault database from Western Reserve University” contains the database downloaded from “http://csegroups.case.edu/bearingdatacenter/home” (used in Sections 4–6). (2) The folder named “Data of Form Roller Bearings” contains bearing signals measured from an offset printing press (used in Section 7). (Supplementary Materials)
References
 Y. Tang, S. L. Liu, Y. H. Liu, and R. Jiang, “Fault diagnosis based on nonlinear complexity measure for reciprocating compressor,” Journal of Mechanical Engineering, vol. 48, no. 3, pp. 102–107, 2012. View at: Publisher Site  Google Scholar
 Y. Lei, F. Jia, D. T. Kong, J. Lin, and S. Xing, “Opportunities and challenges of machinery intelligent fault diagnosis in big data era,” Journal of Mechanical Engineering, vol. 54, no. 5, pp. 94–104, 2018. View at: Publisher Site  Google Scholar
 N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903–995, 1998. View at: Publisher Site  Google Scholar
 X. G. Zhang, Z. Y. Song, D. D. Li, W. Zhang, Z. Zhao, and Y. Chen, “Fault diagnosis for reducer via improved LMD and SVMRFEMRMR,” Shock and Vibration, vol. 2018, Article ID 4526970, 13 pages, 2018. View at: Publisher Site  Google Scholar
 Y. Lv, H. Zhang, and C. Yi, “Trivariate empirical mode decomposition via convex optimization for rolling bearing condition identification,” Sensors, vol. 18, no. 7, p. 2325, 2018. View at: Publisher Site  Google Scholar
 F. Jia, Y. Lei, H. Shan, and J. Lin, “Early fault diagnosis of bearings using an improved spectral kurtosis by maximum correlated kurtosis deconvolution,” Sensors, vol. 15, no. 11, pp. 29363–29377, 2015. View at: Publisher Site  Google Scholar
 Z. J. He, Theories and Applications of Machinery Fault Diagnostics, Higher Education Press, Beijing, China, 2010.
 A. N. Kolmogorov, “A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces,” Dokl Akad Nauk SSSR, vol. 119, no. 5, pp. 861–864, 1958. View at: Google Scholar
 C. Bandt and B. Pompe, “Permutation entropy: a natural complexity measure for time series,” Physical Review Letters, vol. 88, no. 17, Article ID 174102, 4 pages, 2002. View at: Publisher Site  Google Scholar
 M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of complex physiologic time series,” Physical Review Letters, vol. 92, no. 8, pp. 705–708, 2002. View at: Google Scholar
 R. B. Randall, J. Antoni, and S. Chobsaard, “The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals,” Mechanical Systems and Signal Processing, vol. 15, no. 5, pp. 945–962, 2001. View at: Publisher Site  Google Scholar
 J. R. Stack, R. G. Harley, and T. G. Habetler, “An amplitude modulation detector for fault diagnosis in rolling element bearings,” IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 1097–1102, 2004. View at: Publisher Site  Google Scholar
 B. E. Parker Jr., H. A. Ware, D. P. Wipf et al., “Fault diagnostics using statistical change detection in the bispectral domain,” Mechanical Systems & Signal Processing, vol. 14, no. 4, pp. 561–570, 2000. View at: Publisher Site  Google Scholar
 D. Wang, P. W. Tse, and K. L. Tsui, “An enhanced Kurtogram method for fault diagnosis of rolling element bearings,” Mechanical Systems & Signal Processing, vol. 35, no. 12, pp. 176–199, 2013. View at: Publisher Site  Google Scholar
 J. S. Smith, “The local mean decomposition and its application to EEG perception data,” Journal of the Royal Society Interface, vol. 2, no. 5, pp. 443–454, 2005. View at: Publisher Site  Google Scholar
 M. Shao and C. L. Nikias, “Signal processing with fractional lower order moments: stable processes and their applications,” Proceedings of the IEEE, vol. 81, no. 7, pp. 986–1010, 1993. View at: Publisher Site  Google Scholar
 R. Q. Chen, J. Wang, R. Q. Lin, and X. Zhao, “Spectrum sensing based on nonparametric autocorrelation in wireless communication systems under alpha stable noise,” Mobile Information Systems, vol. 2016, Article ID 6753830, 6 pages, 2016. View at: Publisher Site  Google Scholar
 J. P. Nolan, “Stable distributions: models for heavytailed data,” 2005, https://fs2.american.edu/jpnolan/. View at: Google Scholar
 T. S. Qiu, Statistical Signal Processing (Processing and Application of NonGaussian Signals), Publishing House of Electronics Industry, Beijing, China, 2004.
 X. Y. Ma and C. L. Nikias, “Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics,” IEEE Transactions on Signal Process, vol. 44, no. 11, pp. 2669–2687, 1996. View at: Publisher Site  Google Scholar
 N. Bassiou, C. Kotropoulos, and E. Koliopoulou, “Symmetric αstable sparse linear regression for musical audio denoising,” in Proceedings of the International Symposium on Image & Signal Processing & Analysis, Ljubljana, Slovenia, May 2013. View at: Google Scholar
 Q. Xiong, Y. Xu, Y. Peng, W. Zhang, Y. Li, and L. Tang, “Lowspeed rolling bearing fault diagnosis based on EMD denoising and parameter estimate with alpha stable distribution,” Journal of Mechanical Science and Technology, vol. 31, no. 4, pp. 1587–1601, 2017. View at: Publisher Site  Google Scholar
 Y. Li, W. Zhang, Q. Xiong, T. Lu, and G. Mei, “A novel fault diagnosis model for bearing of railway vehicles using vibration signals based on symmetric alphastable distribution feature extraction,” Shock and Vibration, vol. 2016, Article ID 5714195, 13 pages, 2016. View at: Publisher Site  Google Scholar
 Z. H. Zheng and S. Y. Wang, “Radar target detection method of fractional lower order matched filter in complex sea clutter background,” ACTA Electronica Sinica, vol. 44, no. 2, pp. 319–326, 2016. View at: Google Scholar
 M. H. Bibalan, H. Amindavar, and M. Amirmazlaghani, “Characteristic function based parameter estimation of skewed alphastable distribution: an analytical approach,” Signal Processing, vol. 130, pp. 323–336, 2017. View at: Publisher Site  Google Scholar
 X. Ling and X. A. Yan, “A selfadaptive timefrequency analysis method based on local mean decomposition and its application in defect diagnosis,” Journal of Vibration and Control, vol. 22, no. 4, pp. 1049–1061, 2016. View at: Publisher Site  Google Scholar
 Y. Yang, J. Cheng, and K. Zhang, “An ensemble local means decomposition method and its application to local rubimpact fault diagnosis of the rotor systems,” Measurement, vol. 45, no. 3, pp. 561–570, 2012. View at: Publisher Site  Google Scholar
 C. Huang, Y. J. Meng, W. P. Lei, and J. Zhao, “Full vector envelope technique based on complex local mean decomposition and its application in fault feature extraction for rotor system,” Journal of Mechanical Engineering, vol. 52, no. 7, pp. 69–78, 2016. View at: Publisher Site  Google Scholar
 J. Wang, J. Li, and X. D. Wan, “Fault feature extraction method of rolling bearings based on singular value decomposition and local mean decomposition,” Journal of Mechanical Engineering, vol. 51, no. 3, pp. 104–110, 2015. View at: Publisher Site  Google Scholar
 Q. Q. Xu, K. Liu, H. P. Hou et al., “Diagnosis method of fault bearings based on LMD and LE,” China Mechanical Engineering, vol. 27, no. 22, pp. 3075–3081, 2016. View at: Google Scholar
 H. Li, C. S. Zhao, S. Zhou, and Y. Guo, “Fault feature enhancement method for rolling bearing based on wavelet packetcoordinate transformation,” Journal of Mechanical Engineering, vol. 47, no. 19, pp. 74–80, 2011. View at: Publisher Site  Google Scholar
 G. Yu, C. N. Li, J. F. Zhang et al., “A new statistical modeling and detection method for rolling element bearing faults based on alphastable distribution,” Mechanical Systems and Signal Processing, vol. 41, no. 12, pp. 155–175, 2013. View at: Publisher Site  Google Scholar
 Z. N. Li, Y. P. Lv, and J. Han, “Bland sepraration of nonstationary signals in the mechanical equipment based on timefrequency analysis,” Journal of Mechanical Strength, vol. 30, no. 3, pp. 354–358, 2008. View at: Google Scholar
 I. A. Koutrovelis, “Regression type estimation of the parameters of stable laws,” Journal of the American Statistical Association, vol. 75, no. 372, pp. 918–928, 1980. View at: Publisher Site  Google Scholar
 Q. He, “Vibration signal classification by wavelet packet energy flow manifold learning,” Journal of Sound and Vibration, vol. 332, no. 7, pp. 1881–1894, 2013. View at: Publisher Site  Google Scholar
 Q. B. He, “Timefrequency manifold for nonlinear feature extraction in machinery fault diagnosis,” Mechanical Systems and Signal Processing, vol. 35, no. 12, pp. 200–218, 2013. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2019 Qianqian Xu and Kai Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.