Review Article  Open Access
Yadong Xu, Guangsong Chen, Jinsong Tang, "A Gradient Stable NodeBased Smoothed Discrete Shear Gap Method for Analysis of Reissner–Mindlin Plates", Shock and Vibration, vol. 2020, Article ID 8881983, 25 pages, 2020. https://doi.org/10.1155/2020/8881983
A Gradient Stable NodeBased Smoothed Discrete Shear Gap Method for Analysis of Reissner–Mindlin Plates
Abstract
In this paper, a gradient stable nodebased smoothed discrete shear gap method (GSDSG) using 3node triangular elements is presented for Reissner–Mindlin plates in elasticstatic, free vibration, and buckling analyses fields. By applying the smoothed Galerkin weak form, the discretized system equations are obtained. In order to carry out the smoothing operation and numerical integration, the smoothing domain associated with each node is defined. The modified smoothed strain with gradient information is derived from the Hu–Washizu threefield variational principle, resulting in the stabilization terms in the system equations. The stabilized discrete shear gap method is also applied to avoid transverse shearlocking problem. Several numerical examples are provided to illustrate the accuracy and effectiveness. The results demonstrate that the presented method is free of shear locking and can overcome the temporal instability issues, simultaneously obtaining excellent solutions.
1. Introduction
Thinwalled structures (shells) render a majority of engineering structures, and as one special case of shells, the plate has been widely used in mechanical, civil, marine, aerospace, and other engineering science fields. The analyses of plate structures in elasticstatic, free vibration, and buckling fields stand for the key three aspects in their engineering application. There exist two firstorder plate theories, namely, the Kirchhoff plate theory and the Reissner–Mindlin one. Kirchhoff theory is usually applied to thin structures with negligible shear strain, and the C^{1}continuous shape function is required. In view of its simplicity and efficiency, the lowerorder Reissner–Mindlin plate which considered the shear effects is appealing in practical and only requires the continuity shape function for both translational and rotational displacement fields. However, the shearlocking phenomenon of Reissner–Mindlin plate elements emerges when the thickness reaches the thin limit, and this is due to spurious transverse shear strains/stresses in bending. A development residing on nodebased kinematics that aims at alleviation of the shearlocking effect and local improvement of stress recovery has been recently presented by Valvano et al. [1] Besides, many researchers proposed large amounts of effective elements to address this difficulty, such as the assumed natural discrete shear gap (DSG) method [2–5], strain (ANS) methods [6, 7], and also the methods in [8–16]. All the methods show excellent performance in reducing the shearlocking deficiency and increasing the solution accuracy. The DSG method, similar to the ANS method, owns a property of “glue” because of no additional collocation points and fits the combination with other novel element techniques. Marinkovic et al. [17]. applies DSG for the plate part of a flat shell element together with a strain smoothing technique implemented so as to make it independent from node numbering, and it was made available to users through ABAQUS implementation of the element.
Up to now, the finite element method (FEM) still holds its place as the most widely used numerical tool to simulate different behaviors of plates [18, 19] and other structures due to its robustness, reliability, and effectiveness. Unlike traditional FEM in which element connectivity should be established to form the discretized equations, another form of numerical method development called the meshfree or meshless method [20–44] has attracted much attention. Regardless of the element connectivity among the nodes and mesh, only a set of nodes scattered in the problem domain are required. Although the meshfree indeed can overcome some drawbacks of FEM, it still cannot overcome all the deficiencies of FEM. Some key limitations are the difficulties in essential boundary condition implementation, high computational cost, and overly complex trial function construction processes. In an effort to make use of both advantages of FEM and meshless methods, Liu et al. have extended the concept of smoothing domains to formulate a family of smoothed finite element methods (SFEM) [45–47] by using the strain smoothing technique [48]. Researchers further proposed the edgebased smoothed finite element method (ESFEM) [49] and nodebased smoothed finite element method (NSFEM) [50] based on the concept of SFEM.
NSFEM can be regarded as a modified model of FEM. It has very attractive properties and can be easily applied to tetrahedral or triangular elements without any modification of formulas and procedures. NSFEM wins the favor recently for its prominent inherent properties [51], such as its insensitivity to element distortion and its immunity to volumetric locking. Moreover, the computation efficiency of NSFEM has been studied in previous works using bandwidth solvers for linear elasticstatics [52, 53]. It is, however, found that the NSFEM behaves “overly soft” resulting from correction to the “overly stiff” behavior of the compatible FEM. Such an “overly soft” behavior leads to the socalled temporal instability [54]. In addition, spatial instability, another kind of instability, is also a common problem in node integration. The spatial instability can be successfully eliminated by smoothing operation. Temporal instability can be reflected in the modal frequency analysis of structures, which often leads to spurious nonzero energy modes in free vibration analyses and is still a problem to be solved. In [55], Beissel and Belytschko pointed out that by adding a stabilization term that contains the square of the residual of the equilibrium equation to the potential energy functional, the problem of nodal integration which suffers from spurious single modes due to underintegration of the weak form can be solved. Chai et al. [56] also proposed a stable NSFEM to cure the “overly soft” of NSFEM for analysis of underwater acoustic scattering problems. To overcome temporal instability of nodal integration in metalforming simulations, Bonet and Kulasegaram [57] presented a leastsquare stabilization procedure based on these previous works, and Zhang and Liu [53] further developed a stabilization procedure for NSFEM and then provided a recommended range for the stabilization parameter. By expanding the Taylor series of the function of the displacement field [58], it can be used to reduce the instability in direct node integration. However, since the highorder derivatives appear in underlying formulations, the computational cost will increase. Other forms of stabilization consisting of the Taylor expansion and displacement smoothing have been proposed [59], wherein the nodal integration technique is directly applied to obtain stable solutions. Puso et al. [60] developed a nodal integration technique by adding integration points, of which the effectiveness has been proved for both small and large deformation problems. Feng et al. [61] proposed a stable nodal integration method with strain gradient for dynamic analyses of solid structures based on NSFEM. The proposed method can achieve appropriate system stiffness in train energy between FEM and NSFEM solutions and indeed provide temporally stable results. There still exist a variety of gradient term constructions available for different cases [37, 40, 62–67].
In this work, a gradient stable nodebased smoothed discrete shear gap method (GSDSG) using 3node triangular elements is formulated for elasticstatic, free vibration, and buckling analyses of Reissner–Mindlin plates. In order to overcome the temporal instability problem encountered in the nodal integration process, the smoothed Galerkin weak form is applied by using the strain smoothing technique with gradient information, which is derived from the Hu–Washizu threefield variation principle. The stabilized discrete shear gap method is also incorporated into the presented method to avoid the transverse shear locking and improve the accuracy of the present formulation. The numerical examples presented herein demonstrate that the present method is both free of shear locking and temporal instability. It also achieves high accuracy compared with the exact solutions and other existing methods in the literature.
The outline of this paper is as follows. Section 2 describes the weak form of the governing equations and the formulation of the 3node plate element. In Section 3, the gradient stable integration formulation for Reissner–Mindlin plates with the stabilized discrete shear gap technique is introduced. Section 4 demonstrates the effectiveness of the presented method through numerical examples. Finally, the paper closes with concluding remarks.
2. Theoretical Formulations
2.1. Basic Equations for Reissner–Mindlin Plates
Based on the assumption of the firstorder sheardeformation plate theory, the displacements in the Cartesian coordinate system can be expressed as follows:where , , and are the displacements of the plate midplane in the , , and directions and and denote the rotations with respect to and axes, respectively, as shown in Figure 1.
The relevant strain vector can be written in terms of the midplane deformations of equations (1)–(3), which giveswhere , , and are the membrane strain, the bending strain (curvature), and the shear strain, respectively:
By applying the principle of virtual work, the weak form can be stated as follows:where is the membrane stiffness constitutive coefficients, represents the bending stiffness constitutive coefficients, and denotes the transverse shear stiffness constitutive coefficients defined asin which is the shear modulus, is the shear correction factor, and the matrix contains the constitutive coefficients:where and are Young’s modulus and Poisson’s ratio, respectively.
Based on the assumption of the firstorder sheardeformation plate theory, the weak form for the free vibration analysis of the Reissner–Mindlin plate can be derived from the dynamic form of energy principle, i.e.,where is the variation of the displacement field and is the inertia matrix containing the mass density and thickness :
For the buckling analysis, when the plate is subjected to inplane prebuckling stresses , the corresponding weak form can be reformulated aswhere
Equation (13) can be rewritten in a compact form asin whichwhere “” represents the derivative of with respect to x.
2.2. Discrete Formulation for Reissner–Mindlin Plates
The bounded domain is discretized into triangular elements such that and , . For any point in a 3node triangular element, by using the nodal displacements at the nodes of the element using the shape functions, the generalized displacement field in the element is interpolated. The same shape functions are used for both displacements and rotations aswhere is the total number of nodes, is the generalized nodal displacement at node , and is a diagonal matrix of shape functions given by
Substituting equation (17) into (5), the membrane strain , the bending strain , and the shear strain can be written asin whichwhere the subscript .
From equations (14)–(16), the geometrical strain can be written asin which
Substituting equations (22)–(24) into (6), a set of discretized algebraic system equations of Reissner–Mindlin plates for static analysis can be obtained in the following matrix form:where denotes the vector of global nodal displacement at all of the nodes and is the force vector (including forces and torques) defined aswhere and denote the distributed load and prescribed boundary load, respectively.
In equation (27), the global stiffness matrix can be expressed asin which
For free vibration, we havewhere denotes the natural frequency and is the global inertia matrix:
For the buckling analysis, we havewherewhich is the geometrical stiffness matrix, and denotes the critical buckling load. In addition, it is noted that the summation in equations (29), (34), and (36) means an assembly process.
3. The Formulation of Gradient Stable NodeBased Smoothed Integration and Discrete Shear Gap Technique
According to the introduction in Section 2.2, the structural stiffness matrix is composed of three parts, namely, , , and . On the one hand, for and , we take the method of gradient stable nodebased smoothed integration to avoid temporal instability and spatial instability; for , on the other hand, the discrete shear gap technique is employed to avoid the shearlocking problem. The formula for the smoothed integral is derived from the Hu–Washizu threefield variational principle as shown in Section 3.1, and its discrete form is given in Section 3.2. The discrete shear technology is introduced in Section 3.3.
3.1. Gradient Stable Smoothed Derivative Correction
Based on the Hu–Washizu threefield variational principle, Duan [68] gives the corrected nodal derivative using more rigorous mathematics, and the quadratically consistent nodal integration is proposed for secondorder meshfree Galerkin methods. However, the proposal is more complex and requires twoorder Gauss integration of the boundary integral. In this paper, a simplified scheme is provided by using another correct method.
Assume that and are the displacement and assumed Cauchy stress, respectively, is the interpolated strain or smoothed strain, and is the actual strain. The Hu–Washizu threefield weak form for the elasticstatic problem can be written as
Clearly, if the interpolated strain can be somehow constructed from the displacement and meet the following orthogonality condition:
Then, a form containing only independent variables can be obtained as simple as the classical one:
Deriving by reference [68], in order to meet the orthogonality condition as equation (38), let the following equation be satisfied for each subdomain and expressed as a finite element form:where is the shape function corresponding to strain in element I and is the shape function corresponding to smoothed strain in element I. Since stress and strain are related to the first partial derivative of displacement, which is a polynomial combination of coordinates, stress can also be regarded as a polynomial of position. Equation (40) can be equivalent to the following:where is the space base which is one order lower than the space for the displacement .
Different from reference [68] which chose the quadratic base for displacement, the first base is selected for displacement as the shape function of the firstorder triangular element, and . Then, the following equations can be obtained:
In the nodal integration scheme, node is the only point in , and there exists only one unknown . Hence, equations (42) and (43) cannot be satisfied at the same time. To this end, we introduce the derivatives of the function by means of Taylor’s expansion such that and are introduced and can serve as the other two unknowns. Taylor’s expansion for can be formulated aswhere H.O.T means higherorder terms.
Substitution of equations (56)–(58) into (42) and (43) leads towhere is the area of and
By solving equation (47), the corrected nodal derivative and its derivatives, i.e., and , are obtained. Following the same derivation, Taylor’s expansion for is
The equation for yderivatives can be written as
To simplify the calculation, the equivalent circle domain can be assumed for the subdomain . The area , first moments and , and second moments of inertia , , and of each nodal domain can be expressed as
It should be noted that the concept of equivalent circles is only introduced to simplify the calculation of these integrals, and the actual smooth region is still a polygon composed of elements and nodes.
3.2. Discrete Form of Gradient Stabilized Nodal Integration
In this part, the nodal integration formulation will be introduced. We can discretize the problem domain with triangular elements as in standard FEM, but the integral required in this work is now based on the node and utilizes strain smoothing operations. In the process of such node integration, the middle edge points are connected with the center points of the surrounding triangular elements in order to form the smoothed domain of each node sequentially, as shown in Figure 2, such that and for , in which is the total number of nodes of the problem domain.
From equations (44)–(46) and equations (49)–(51), the smoothed strain and in surrounding node can be expressed aswherein which
3.3. Formulation of the Stabilized Discrete Shear Gap Technique
The discrete shear gap method is adopted here to eliminate the shear locking. In each triangular element, the nodes are denoted anticlockwise as i, j, and k, respectively. The shear strain can be given aswhere and are the discrete shear gaps at the node given bywhere
From equations (64)–(70), the shear strain in each element can be rewritten asin whichwhere is the area of the element.
To improve significantly the accuracy of approximate solutions and to stabilize shear force oscillations presenting the triangular element, a stabilization technique [69, 70] needs to be added to the original discrete shear gap element. Therefore, the transverse shear stiffness constitutive coefficients should be corrective as :where is a positive constant [69, 71] and the characteristic length can be estimated as the diameter of the equation circle domain:
3.4. Discrete Formulation for GSDSG Method
We now seek for a weak form solution of the generalized displacement field that satisfies the following smoothed Galerkin weak form:
Substituting equations (74)–(76) into (77), a set of discretized algebraic system equations can be obtained in the following matrix form:where is the global smoothed stiffness matrix assembled in the form of
The summation in equation (79) means an assembly process same as the practice in the FEM, and is the number of the nodes of the whole problem domain . is given from equation (32) by using the stabilized discrete shear gap method to eliminate the shear locking. and are the stiffness matrices associated with node given as
For free vibration, we have
For the buckling analysis, we havewhere denotes the geometrical stiffness matrix assembled in the form of
The nodal geometrical stiffness matrix in equation (84) can be calculated bywith
4. Numerical Examples
In this section, static, free vibration, and buckling analyses of square, Tshape, elliptical, and rectangular plates are considered. In addition, the present method is compared with other three methods, the FEMDSG, NSFEM, and NSDSG methods. To examine the numerical error precisely, the displacement error norm is defined aswhere the superscript “exact” denotes the exact solution (if an exact solution does not exist, “exact” is the reference solution) and “num” represents the displacement vector obtained using numerical methods including the present method.
In the following example, material parameters’ Young's modulus is expressed as E, Poisson’s ratio is expressed as , and mass density is expressed as .
4.1. Static Analysis
4.1.1. Square Plate
Consider the model of a simply supported square plate subjected to a uniform load as shown in Figure 3. The geometric and material parameters are length and thickness ; and . Due to symmetry, only a quarter of the plate is modeled to reduce the computation cost, and uniform meshes are employed. The center deflection is normalized as , where is the bending stiffness. In order to test the performance of the mentioned numerical methods, the numerical results obtained using the present method are compared with other three methods. The result calculated by the ABAQUS software is used for reference, using S4R elements and a large number (37,249) of nodes.
Table 1 shows the numerical results of the normalized center deflection. Figure 4 shows the relative error, and the label “mesh density” on the horizontal axis shows the number of cells on each side. Figure 5 shows the convergence status of the displacement error norm , where is the average nodal spacing of the node distribution. From the results, it can be seen that the deflection obtained by NSFEM and NSDSG is larger than the reference solution, whereas the deflection solved by the proposed method and FEMDSG is smaller than the reference solution. Meanwhile, the proposed method is more accurate than the others. By comparing the convergence rate of the methods as shown in Figure 5, the proposed method has a higher convergence rate than the others, as far as the average nodal spacing trail off is concerned.

4.1.2. TShaped Plate
In this section, a Tshaped plate with clamped edges and subjected to two kinds of loads, i.e., uniform and concentrated loads, is analyzed to further examine the efficiency of the present method. The geometric parameters are shown in Figure 6. Two thickness are considered, and . Material parameters are and . The uniform load applied to the entire plate is given by , and the concentrated load applied to point A is taken as . Due to the symmetry of the plate, only half of the model is studied to reduce the calculation cost.
Figure 7 shows the mesh model, which is discretized using 154 nodes with 243 triangular elements. Numerical results of the present method are compared with other three methods. Since the analytical solution is unavailable for this problem, the result calculated by the ABAQUS software with a very fine mesh (2751 nodes and 5200 elements) was used for reference. The deflections along the line OA are plotted as shown in Figures 8 and 9. From the results, it can be seen that, for the thick plate, the results are almost identical, and the result is close to the reference solution. That is, because the shearlocking phenomenon does not appear in the thick plate, all the four methods can obtain high accuracy and is hard to distinguish which is higher. However, for the thin plate, the difference in the accuracy of the four methods is obvious. The accuracy of FEMDSG and NSDGS is lower, and both NSFEM and the proposed method can achieve high accuracy compared with the reference result.
(a)
(b)
(a)
(b)
4.2. Free Vibration Analysis
In this section, numerical examples of free vibration for various plates are given. The nondimensional frequency parameter is normalized by [35], where is the circle frequency value, is the geometry size given in each problem, is the mass density, is the thickness, and is the bending stiffness.
4.2.1. Square Plates
Square plates of length , width , and thickness are considered. The material parameters are , , and . The plate is modeled with uniform meshes of 4, 8, 16, and 24 elements each side. The boundary conditions are simply supported (S), clamped (C), and free (F). SSSS means that all four sides are simply supported, and the others are similar.
First, the SSSS plate corresponding to lengthtowidth ratios is considered. The thicknesstolength for the thin plate is and for the thick plate is , respectively. Figures 10(a), 10(c), and 10(d) show the geometry of the plate and its mesh grid, respectively. Table 2 shows the values of the nondimensional frequency parameter corresponding to the six frequencies using 4 × 4, 8 × 8, 16 × 16, and 24 × 24 meshes. It is observed that the accuracy of the presented method increases with the decreasing size of the mesh elements, and the results of GSDSG agree well with the analytical ones. For the same mesh, the presented method is more accurate than FEMDSG, NSFEM, and NSDSG elements for both thin and thick plates. Table 3 shows four methods for the first six modes under the mesh. The spurious nonzero energy mode is marked with the blue wireframe. It can be clearly found in the table that NSFEM has spurious nonzero energy modes, that is, severe time instability. The mode obtained by the NSDSG method cannot eliminate spurious nonzero energy modes completely even using the discrete shear gap technology. In contrast, the advantage of the GSDSG method is particularly obvious, and there are no spurious nonzero energy modes, which indicates its stability in the time domain.
(a)
(b)
(c)
(d)


The second problem is that the mesh of CCCC square plate as shown in Figure 10(b) is the same as that of the SSSS plate. The nondimensional frequency parameter corresponding to the first six frequencies of the CCCC plate is shown in Table 4. The corresponding modes under are given in Table 5, and the spurious nonzero energy mode is marked with the blue wireframe. It can be found again that the GSDSG method is superior to the other three methods.


In this example, we further studied five different boundary conditions: SSSF, SFSF, CCCF, CFCF, and CFSF. In this case, a 16 × 16 regular mesh is adopted for square plates with different boundary conditions. The square of the nondimensional frequency parameter corresponding to the first four lowest frequencies is shown in Table 6. As a result, the GSDSG method is almost superior to the other three methods and is consistent with the exact solution of all frequencies in this problem.

4.2.2. Elliptical Plate
In this section, a simply supported elliptical plate is considered. The geometric parameters of the plate are shown in Figure 11 with thickness . The material properties are , , and . Since the analytical solution is unavailable for this problem, the result calculated by the ABAQUS software with a very fine mesh (33345 nodes) is employed as a reference.
To illustrate the benefits of triangular grids, we use an unstructured mesh layout with 446 nodes, as shown in Figure 12. The first 12 natural modes solved by the proposed method are plotted in Table 7. The spurious nonzero energy modes are marked by the blue border, which indicates that the NSFEM method has the time instability problem. The natural frequencies corresponding to the modes together with other three method solutions are listed in Table 8. Natural frequencies marked by a black border in Table 8 denote the spurious nonzero modes. The relative errors of natural frequencies solved by GSDSG together with solutions obtained using other three methods are plotted in Figure 13. The following conclusions can be drawn from the results: (1) the results obtained by GSDSG calculation have no spurious nonzero energy modes and therefore no temporal instability problem; (2) the natural frequencies obtained using the FEMDSG method are all higher than the reference solutions, with accuracy severely decreasing with increasing frequencies; (3) NSDSG has been improved in the mode calculation of this problem, but its frequency calculation accuracy is still slightly lower than that of GSDSG. Especially with increasing frequencies, the accuracy of NSDSG decreases, whereas the presented method maintains accuracy not only for lower frequencies, but also for higher ones; (4) the presented method provides more accurate natural frequencies than FEMDSG, NSFEM, and NSDSG and can effectively eliminate singular modes.


4.3. Buckling Analysis
In the following examples, we use the proposed method to study the critical buckling load of rectangular plates with different lengthwidth ratios and different edge loads, as shown in Figure 14. For all cases considered here, the nondimensional buckling load factor is defined as [35], where the edge width of the plate is expressed as , the critical buckling load is expressed as , and the bending stiffness is expressed as . For the material parameters, and .
(a)
(b)
(c)
(d)
4.3.1. Rectangular Plates Subjected to Different Edge Loading
Firstly, a square plate with thickness t under a simply supported boundary condition is considered. Uniaxial compression (UC), biaxial compression (BC), and shear inplane (SP) are studied. The problem domain is discretized with a 16 × 16 uniformly distributed triangular mesh.
The critical buckling load factor solved using the GSDSG together with the solutions calculated by FEMDSG, NSFEM, and NSDSG is listed in Table 9. The reference solutions are given by Timoshenko [72], Tham [75], and Wang [40]. From the table, it can be clearly seen that (1) the FEMDSG and NSFEM are slightly less accurate than the NSDSG and GSDSG due to the resulting overly stiff and soft system, respectively; (2) numerical tests demonstrate that GSDSG can provide a relatively good accuracy of the critical buckling load factor compared with other three methods. Figure 15 shows the buckling modes of simply supported square plates under different edge loading. It is clear that the results of the GSDSG can provide very stable buckling modes.
(a)
(b)
(c)
4.3.2. Rectangular Plates with Different LengthtoWidth and ThicknesstoWidth Ratios
In this section, uniaxial compression rectangular plates with different lengthtowidth ratios and thicknesstowidth ratios are considered. Simply supported boundary conditions are assumed. Four types of lengthtowidth ratios, , 1.5, 2.0, and 2.5, and three types of thicknesstowidth ratios, t/b = 0.05, 0.1, and 0.2, are investigated. The problem domain is discretized using a uniformly distributed triangular mesh with 16 elements along the yaxis.
The critical buckling load factors solved by different schemes are given in Table 10. The reference solutions are given by Liew [73], Kitipornchai [74], and NguyenXuan [37]. As in the previous section, the GSDSG method can obtain very good results compared with other methods. The axial buckling modes of simply supported rectangular plates with thicknesstowidth ratios ; 1.5; 2.0; 2.5 are shown in Figure 16. Again, very stable buckling modes can be observed.

(a)
(b)
(c)
(d)
5. Conclusions
In this work, a GSDSG method is formulated for Reissner–Mindlin plate problems in elasticstatic, free vibration, and buckling analyses using 3node triangular elements. The stabilization term is added to the discretized system equations by applying the smoothed Galerkin weak form. Through the formulations and numerical examples, the accuracy of the proposed method is demonstrated. Some concluding remarks can be drawn as follows:(1)Several numerical examples indicate that GSDSG is temporal stable for both free vibration and buckling problems(2)In elasticstatic analysis, the GSDSG is free of shear locking and has higher accuracy in the displacement field compared with the FEMDSG, NSFEM, and NSDSG methods(3)In free vibration and buckling analyses, the GSDSG effectively eliminates the spurious nonzero energy modes produced by the original NSFEM and NSDSG and provides a relatively accurate prediction of natural frequencies compared with other methods.
Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.
Conflicts of Interest
The authors declare that there are no conflicts of interest regarding the publication of this paper.
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant no. 11472137 and the Fundamental Research Funds for the Central Universities under Grant nos. 309181A8801 and 30919011204.
References
 S. Valvano and E. Carrera, “Multilayered plate elements with nodedependent kinematics for the analysis of composite and sandwich structures,” Facta Universitatis, Series: Mechanical Engineering, vol. 15, no. 1, pp. 1–30, 2017. View at: Publisher Site  Google Scholar
 W. Li, Z. X. Gong, Y. B. Chai et al., “Hybrid gradient smoothing technique with discrete shear gap method for shell structures,” Computers & Mathematics with Applications, vol. 74, no. 8, pp. 1826–1855, 2017. View at: Publisher Site  Google Scholar
 K.U. Bletzinger, M. Bischoff, and E. Ramm, “A unified approach for shearlockingfree triangular and rectangular shell finite elements,” Computers & Structures, vol. 75, no. 3, pp. 321–334, 2000. View at: Publisher Site  Google Scholar
 S. Li, J. Zhang, and X. Cui, “Nonlinear dynamic analysis of shell structures by the formulation based on a discrete shear gap,” Acta Mechanica, vol. 230, no. 10, pp. 3571–3591, 2019. View at: Publisher Site  Google Scholar
 G. Yang, D. Hu, X. Han, and G. Ma, “An extended edgebased smoothed discrete shear gap method for free vibration analysis of cracked ReissnerMindlin plate,” Applied Mathematical Modelling, vol. 51, pp. 477–504, 2017. View at: Publisher Site  Google Scholar
 K. Y. Size and D. Zhu, “A quadratic assumed natural strain shell curved triangular element,” Computer Methods in Applied Mechanics in Engineering, vol. 174, pp. 57–71, 1999. View at: Google Scholar
 J. H. Kim and Y. H. Kim, “Threenode macro triangular shell element based on the assumed natural strains,” Computational Mechanics, vol. 29, no. 6, pp. 441–458, 2002. View at: Publisher Site  Google Scholar
 J. Videla, S. Natarajan, and S. P. A. Bordas, “A new lockingfree polygonal plate element for thin and thick plates based on ReissnerMindlin plate theory and assumed shear strain fields,” Computers & Structures, vol. 220, pp. 32–42, 2019. View at: Publisher Site  Google Scholar
 E. D. L. Pugh, E. Hinton, and O. C. Zienkiewicz, “A study of quadrilateral plate bending elements with 'reduced' integration,” International Journal for Numerical Methods in Engineering, vol. 12, no. 7, pp. 1059–1079, 1978. View at: Publisher Site  Google Scholar
 T. Belytschko, H. Stolarski, and N. Carpenter, “AC0 triangular plate element with onepoint quadrature,” International Journal for Numerical Methods in Engineering, vol. 20, no. 5, pp. 787–802, 1984. View at: Publisher Site  Google Scholar
 G. S. Dhatt, “An efficient triangular shell element,” AIAA Journal, vol. 8, no. 11, pp. 2100–2102, 1970. View at: Publisher Site  Google Scholar
 J. C. Simo and M. S. Rifai, “A class of mixed assumed strain methods and the method of incompatible modes,” International Journal for Numerical Methods in Engineering, vol. 29, no. 8, pp. 1595–1638, 1990. View at: Publisher Site  Google Scholar
 K.J. Bathe and E. N. Dvorkin, “A formulation of general shell elementsthe use of mixed interpolation of tensorial components,” International Journal for Numerical Methods in Engineering, vol. 22, no. 3, pp. 697–722, 1986. View at: Publisher Site  Google Scholar
 Y. Ko, P.S. Lee, and K.J. Bathe, “A new 4node MITC element for analysis of twodimensional solids and its formulation in a shell element,” Computers & Structures, vol. 192, pp. 34–49, 2017. View at: Publisher Site  Google Scholar
 D. Chapelle and I. P. Suarez, “Detailed reliability assessment of triangular MITC elements for thin shells,” Computers and Structures, vol. 86, no. 2324, pp. 2192–2202, 2008. View at: Publisher Site  Google Scholar
 P. S. Lee and K. J. Bathe, “Development of MITC isotropic triangular shell finite elements,” Computers and Structures, vol. 82, no. 1112, pp. 945–962, 2004. View at: Publisher Site  Google Scholar
 D. Marinkovic, G. Rama, and M. Zehn, “Abaqus implementation of a corotational piezoelectric 3node shell element with drilling degree of freedom,” Facta UniversitatisSeries Mechanical Engineering, vol. 17, pp. 269–283, 2019. View at: Google Scholar
 O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Butterworthheinemann, Oxford, UK, 5th edition, 2000.
 T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, PrenticeHall, New York, NY, USA, 2000.
 X. You, W. Li, and Y. Chai, “A truly meshfree method for solving acoustic problems using local weak form and radial basis functions,” Applied Mathematics and Computation, vol. 365, no. 15, p. 124694, 2020. View at: Publisher Site  Google Scholar
 R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics: theory and application to nonspherical stars,” Monthly Notices of the Royal Astronomical Society, vol. 181, no. 3, pp. 375–389, 1977. View at: Publisher Site  Google Scholar
 B. Nayroles, G. Touzot, and P. Villon, “Generalizing the finite element method: diffuse approximation and diffuse elements,” Computational Mechanics, vol. 10, no. 5, pp. 307–318, 1992. View at: Publisher Site  Google Scholar
 T. Belytschko, Y. Y. Lu, and L. Gu, “Elementfree Galerkin methods,” International Journal for Numerical Methods in Engineering, vol. 37, no. 2, pp. 229–256, 1994. View at: Publisher Site  Google Scholar
 W. K. Liu, S. Jun, and Y. F. Zhang, “Reproducing kernel particle methods,” International Journal for Numerical Methods in Fluids, vol. 20, no. 89, pp. 1081–1106, 1995. View at: Publisher Site  Google Scholar
 C. A. Duate and J. T. Odent, “Hpclouds an hp meshless method,” Numerical Methods for Partial Differential Equations, vol. 12, no. 6, pp. 673–705, 1996. View at: Google Scholar
 S. N. Atluri and T. Zhu, “A new meshless local PetrovGalerkin (MLPG) approach in computational mechanics,” Computational Mechanics, vol. 22, no. 2, pp. 117–127, 1998. View at: Publisher Site  Google Scholar
 G. R. Liu and Y. T. Gu, “A point interpolation method for twodimensional solids,” International Journal for Numerical Methods in Engineering, vol. 50, no. 4, pp. 937–951, 2001. View at: Publisher Site  Google Scholar
 T. Rabczuk, T. Belytschko, and S. P. Xiao, “Stable particle methods based on Lagrangian kernels,” Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 12–14, pp. 1035–1063, 2004. View at: Publisher Site  Google Scholar
 Y. Liu, Y. C. Hon, and K. M. Liew, “A meshfree Hermitetype radial point interpolation method for Kirchhoff plate problems,” International Journal for Numerical Methods in Engineering, vol. 66, no. 7, pp. 1153–1178, 2006. View at: Publisher Site  Google Scholar
 P. Krysl and T. Belytschko, “Analysis of thin shells by the elementfree Galerkin method,” International Journal of Solids and Structures, vol. 33, no. 2022, pp. 3057–3080, 1996. View at: Publisher Site  Google Scholar
 H. Mousavi, M. Azhari, and M. M. Saadatpour, “A novel formulation for static and buckling analysis of plates using coupled element free Galerkinfinite strip (EFGFS),” Applied Mathematical Modelling, vol. 70, pp. 264–284, 2019. View at: Publisher Site  Google Scholar
 K. M. Liew, Y. Q. Huang, and J. N. Reddy, “Analysis of general shaped thin plates by the moving leastsquares differential quadrature method,” Finite Elements in Analysis and Design, vol. 40, no. 11, pp. 1453–1474, 2004. View at: Publisher Site  Google Scholar
 X. Wang and Z. Yuan, “Buckling analysis of isotropic skew plates under general inplane loads by the modified differential quadrature method,” Applied Mathematical Modelling, vol. 56, pp. 83–95, 2018. View at: Publisher Site  Google Scholar
 J. Sladek, V. Sladek, and H. A. Mang, “Meshless LBIE formulations for simply supported and clamped plates under dynamic load,” Computers & Structures, vol. 81, no. 16, pp. 1643–1651, 2003. View at: Publisher Site  Google Scholar
 D. C. Simkins Jr, S. Li, H. Lu et al., “Reproducing kernel element method. Part IV: globally compatible C^{n} (n–1) triangular hierarchy,” Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 12–14, pp. 1013–1034, 2004. View at: Publisher Site  Google Scholar
 H. NguyenXuan, T. Rabczuk, S. Bordas et al., “A smoothed finite element method for plate analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 13–16, pp. 1184–1203, 2008. View at: Publisher Site  Google Scholar
 H. NguyenXuan, G. R. Liu, C. ThaiHoang et al., “An edgebased smoothed finite element method (ESFEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 9–12, pp. 471–489, 2010. View at: Publisher Site  Google Scholar
 X. Y. Cui, G. R. Liu, G. Y. Li et al., “Analysis of plates and shells using an edgebased smoothed finite element method,” Computational Mechanics, vol. 45, no. 23, pp. 141–156, 2010. View at: Publisher Site  Google Scholar
 X. Y. Cui, G. R. Liu, G. Y. Li et al., “A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells,” Computing in Science and Engineering, vol. 28, no. 2, pp. 109–125, 2008. View at: Google Scholar
 G. Wang, X. Y. Cui, and G. Y. Li, “Temporal stabilization nodal integration method for static and dynamic analyses of ReissnerMindlin plates,” Computers & Structures, vol. 152, no. C, pp. 125–141, 2015. View at: Publisher Site  Google Scholar
 J. T. Chen, I. L. Chen, K. H. Chen, Y. T. Lee, and Y. T. Yeh, “A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function,” Engineering Analysis with Boundary Elements, vol. 28, no. 5, pp. 535–545, 2004. View at: Publisher Site  Google Scholar
 V. N. Van Do and C.H. Lee, “Nonlinear analyses of FGM plates in bending by using a modified radial point interpolation meshfree method,” Applied Mathematical Modelling, vol. 57, pp. 1–20, 2018. View at: Publisher Site  Google Scholar
 T. Q. Bui and M. N. Nguyen, “A moving Kriging interpolationbased meshfree method for free vibration analysis of Kirchhoff plates,” Computers and Structures, vol. 89, no. 34, pp. 380–394, 2011. View at: Publisher Site  Google Scholar
 T.V. Vu, A. Khosravifard, M. R. Hematiyan, and T. Q. Bui, “A new refined simple TSDTbased effective meshfree method for analysis of throughthickness FG plates,” Applied Mathematical Modelling, vol. 57, pp. 514–534, 2018. View at: Publisher Site  Google Scholar
 G. R. Liu, K. Y. Dai, and T. T. Nguyen, “A smoothed finite element method for mechanics problems,” Computational Mechanics, vol. 39, no. 6, pp. 859–877, 2007. View at: Publisher Site  Google Scholar
 Z. Gong, Y. Chai, W. Li et al., “Coupled analysis of structural–acoustic problems using the cellbased smoothed threenode Mindlin plate element,” International Journal of Computational Methods, vol. 13, no. 2, pp. 1–25, 2016. View at: Publisher Site  Google Scholar
 Y. Chai, W. Li, G. Liu, Z. Gong, and T. Li, “A superconvergent alpha finite element method (SαFEM) for static and free vibration analysis of shell structures,” Computers & Structures, vol. 179, no. 15, pp. 27–47, 2017. View at: Publisher Site  Google Scholar
 J.S. Chen, C.T. Wu, S. Yoon, and Y. You, “A stabilized conforming nodal integration for Galerkin meshfree methods,” International Journal for Numerical Methods in Engineering, vol. 50, no. 2, pp. 435–466, 2001. View at: Publisher Site  Google Scholar
 G. R. Liu, T. NguyenThoi, and K. Y. Lam, “An edgebased smoothed finite element method (ESFEM) for static, free and forced vibration analyses of solids,” Journal of Sound and Vibration, vol. 320, no. 45, pp. 1100–1130, 2009. View at: Publisher Site  Google Scholar
 G. R. Liu, T. NguyenThoi, H. NguyenXuan, and K. Y. Lam, “A nodebased smoothed finite element method (NSFEM) for upper bound solutions to solid mechanics problems,” Computers & Structures, vol. 87, no. 12, pp. 14–26, 2009. View at: Publisher Site  Google Scholar
 G. R. Liu, “A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods,” International Journal of Computational Methods, vol. 5, no. 2, pp. 199–236, 2008. View at: Publisher Site  Google Scholar
 G. R. Liu, “G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I theory,” International Journal for Numerical Methods in Engineering, vol. 81, no. 9, pp. 1093–1126, 2010. View at: Google Scholar
 Z.Q. Zhang and G. R. Liu, “Temporal stabilization of the nodebased smoothed finite element method and solution bound of linear elastostatics and vibration problems,” Computational Mechanics, vol. 46, no. 2, pp. 229–246, 2010. View at: Publisher Site  Google Scholar
 G. R. Liu and T. NguyenThoi, Smoothed Finite Element Methods, CRC Press, Boca Raton, FL, USA, 2010.
 S. Beissel and T. Belytschko, “Nodal integration of the elementfree Galerkin method,” Computer Methods in Applied Mechanics and Engineering, vol. 139, no. 14, pp. 49–74, 1996. View at: Publisher Site  Google Scholar
 Y. Chai, W. Li, T. Li, Z. Gong, and X. You, “Analysis of underwater acoustic scattering problems using stable nodebased smoothed finite element method,” Engineering Analysis with Boundary Elements, vol. 72, pp. 27–41, 2016. View at: Publisher Site  Google Scholar
 J. Bonet and S. Kulasegaram, “Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations,” International Journal for Numerical Methods in Engineering, vol. 47, no. 6, pp. 1189–1214, 2000. View at: Publisher Site  Google Scholar
 T. Nagashima, “Nodebynode meshless approach and its applications to structural analyses,” International Journal for Numerical Methods in Engineering, vol. 46, no. 3, pp. 341–385, 1999. View at: Publisher Site  Google Scholar
 C.T. Wu, S.W. Chi, M. Koishi, and Y. Wu, “Strain gradient stabilization with dual stress points for the meshfree nodal integration method in inelastic analyses,” International Journal for Numerical Methods in Engineering, vol. 107, no. 1, pp. 3–30, 2016. View at: Publisher Site  Google Scholar
 M. A. Puso, J. S. Chen, E. Zywicz, and W. Elmer, “Meshfree and finite element nodal integration methods,” International Journal for Numerical Methods in Engineering, vol. 74, no. 3, pp. 416–446, 2008. View at: Publisher Site  Google Scholar
 H. Feng, X. Y. Cui, and G. Y. Li, “A stable nodal integration method with strain gradient for static and dynamic analysis of solid mechanics,” Engineering Analysis with Boundary Elements, vol. 62, pp. 78–92, 2016. View at: Publisher Site  Google Scholar
 Q. Duan and T. Belytschko, “Gradient and dilatational stabilizations for stresspoint integration in the elementfree Galerkin method,” International Journal for Numerical Methods in Engineering, vol. 77, no. 6, pp. 776–798, 2009. View at: Publisher Site  Google Scholar
 G. Chen, L. Qian, and J. Ma, “A gradient stable nodebased smoothed finite element method for solid mechanics problems,” Shock and Vibration, vol. 2019, pp. 1–24, 2019. View at: Publisher Site  Google Scholar
 G. R. Liu, T. NguyenThoi, and K. Y. Lam, “A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 4548, pp. 3883–3897, 2008. View at: Publisher Site  Google Scholar
 G. Chen, L. Qian, and J. Ma, “A gradient stable nodebased smoothed finite element method for solid mechanics problems,” Shock and Vibration, p. 2019, 2019. View at: Google Scholar
 G. Chen, L. Qian, J. Ma, and Y. Zhu, “Smoothed FEMeshfree method for solid mechanics problems,” Acta Mechanica, vol. 229, no. 6, pp. 2597–2618, 2018. View at: Publisher Site  Google Scholar
 H. Zhang, G. Chen, L. Qian, and J. Ma, “FEmeshfree QUAD4 element with modified radial point interpolation function for structural dynamic analysis,” Shock and Vibration, vol. 2019, Article ID 3269276, 23 pages, 2019. View at: Publisher Site  Google Scholar
 Q. Duan, B. Wang, X. Gao, and X. Li, “Quadratically consistent nodal integration for second order meshfree Galerkin methods,” Computational Mechanics, vol. 54, no. 2, pp. 353–368, 2014. View at: Publisher Site  Google Scholar
 M. Lyly, R. Stenberg, and T. Vihinen, “A stable bilinear element for the ReissnerMindlin plate model,” Computer Methods in Applied Mechanics and Engineering, vol. 110, no. 34, pp. 343–357, 1993. View at: Publisher Site  Google Scholar
 M. Bischoff and K. U. Bletzinger, “Stabilized DSG plate and shell elements,” Trends in Computational Structural Mechanics, CIMNE, Barcelona, Spain, 2001. View at: Google Scholar
 F. Wu, G. R. Liu, G. Y. Li, A. G. Cheng, and Z. C. He, “A new hybrid smoothed FEM for static and free vibration analyses of ReissnerMindlin Plates,” Computational Mechanics, vol. 54, no. 3, pp. 865–890, 2014. View at: Publisher Site  Google Scholar
 S. P. Timoshenko and J. N. Goodierwrited, Theory of Elasticity, McGrawHill Book Company, PA, USA, 3rd edition, 1970.
 K. M. Liew, J. Wang, T. Y. Ng et al., “Free vibration and buckling analyses of sheardeformable plates based on FSDT meshfree method,” Journal of Sound and Vibration, vol. 276, no. 3–5, pp. 997–1017, 2004. View at: Publisher Site  Google Scholar
 S. Kitipornchai, Y. Xiang, C. M. Wang, and K. M. Liew, “Buckling of thick skew plates,” International Journal for Numerical Methods in Engineering, vol. 36, no. 8, pp. 1299–1310, 1993. View at: Publisher Site  Google Scholar
 L. G. Tham and H. Y. Szeto, “Buckling analysis of arbitrarily shaped plates by spline finite strip method,” Computers & Structures, vol. 36, no. 4, pp. 729–735, 1990. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2020 Yadong Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.