Texture, Stress, and Microstructure

Texture, Stress, and Microstructure / 1993 / Article
Special Issue

Proceedings of the Symposium Microscale Textures of Materials

View this Special Issue

Open Access

Volume 20 |Article ID 414786 | https://doi.org/10.1155/TSM.20.141

A. Akef, J. H. Driver, "Local Textures in Deformed and Recrystallized Aluminium Crystal", Texture, Stress, and Microstructure, vol. 20, Article ID 414786, 14 pages, 1993. https://doi.org/10.1155/TSM.20.141

Local Textures in Deformed and Recrystallized Aluminium Crystal

Abstract

The recrystallization mechanisms in deformed aluminium single crystals have been investigated by SEM microdiffraction techniques (ECP and EBSP). Aluminium crystals of (001)(uv0) and (001)[011-] orientations were deformed in plane strain compression to a true strain of ~1 to develop different deformation microstructures. Transition bands separating deformation bands were formed by orientation splitting in the (001)(uv0) crystals, but were not observed in the (001)[011-] crystal.During annealing at 250°C and 400°C, recrystallization nuclei are developed in both the deformed matrix and along transition bands. Matrix nucleation appears to occur by a subgrain coalescence mechanism according to which the new grains are misoriented 15-30° from the average as-deformed material. Transition band nucleation gives an orientation spread 20-30° around the original, undeformed crystal orientation. A well-defined cube recrystallization texture is obtained at 400°C after complete recrystallization of the initial cube crystal.

Copyright © 1993 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views31
Downloads0
Citations

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.