The Scientific World Journal

The Scientific World Journal / 2001 / Article
Special Issue

Optimizing Nitrogen Management in Food and Energy Production and Environmental Protection: 2nd International Nitrogen Conference 2001

View this Special Issue

Research Article | Open Access

Volume 1 |Article ID 207295 | 7 pages | https://doi.org/10.1100/tsw.2001.351

Modeling of Nitrogen in River Water Using a Detailed and a Simplified Model

Academic Editor: Joe Wisniewski

Abstract

To model catchment surface water quantity and quality, different model types are available. They vary from detailed physically based models to simplified conceptual and empirical models. The most appropriate model type for a certain application depends on the project objectives and the data availability. The detailed models are very useful for short-term simulations of representative events. They cannot be used for long-term statistical information or as a management tool. For those purposes, more simplified (conceptual or meta-) models must be used. In this study, nitrogen dynamics are modeled in a river in Flanders. Nitrogen sources from agricultural leaching and domestic point sources are considered. Based on this input, concentrations of ammonium (NH4-N) and nitrate (NO3-N) in the river water are modeled in MIKE 11 by taking into consideration advection and dispersion and the most important biological and chemical processes. Model calibration was done on the basis of available measured water quality data. To this detailed model, a more simplified model was calibrated with the objective to more easily yield long-term simulation results that can be used in a statistical analysis. The results show that the conceptual simplified model is 1800 times faster than the MIKE 11 model. Moreover the two models have almost the same accuracy. The detailed models are recommended for short-term simulations unless there are enough data for model input and model parameters. The conceptual simplified model is recommended for long-term simulations.


More related articles

54 Views | 621 Downloads | 3 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.