The Scientific World Journal

The Scientific World Journal / 2002 / Article
Special Issue

Analysis, Toxicity and Biodegradation of Organic Pollutants in Groundwater from Contaminated Land, Landfills and Sediments: Selected Peer-Reviewed

View this Special Issue

Short Communication | Open Access

Volume 2 |Article ID 172496 | 7 pages |

Field—Based Supercritical Fluid Extraction of Hydrocarbons at Industrially Contaminated Sites

Received05 Nov 2001
Revised28 Feb 2002
Accepted10 Mar 2002


Examination of organic pollutants in groundwaters should also consider the source of the pollution, which is often a solid matrix such as soil, landfill waste, or sediment. This premise should be viewed alongside the growing trend towards field-based characterisation of contaminated sites for reasons of speed and cost. Field-based methods for the extraction of organic compounds from solid samples are generally cumbersome, time consuming, or inefficient. This paper describes the development of a field-based supercritical fluid extraction (SFE) system for the recovery of organic contaminants (benzene, toluene, ethylbenzene, and xylene and polynuclear aromatic hydrocarbons) from soils. A simple, compact, and robust SFE system has been constructed and was found to offer the same extraction efficiency as a well-established laboratory SFE system. Extraction optimisation was statistically evaluated using a factorial analysis procedure. Under optimised conditions, the device yielded recovery efficiencies of >70% with RSD values of 4% against the standard EPA Soxhlet method, compared with a mean recovery efficiency of 48% for a commercially available field-extraction kit. The device will next be evaluated with real samples prior to field deployment.

More related articles

42 Views | 375 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.