The Scientific World Journal

The Scientific World Journal / 2003 / Article

Mini-Review Article | Open Access

Volume 3 |Article ID 564931 | https://doi.org/10.1100/tsw.2003.16

Paul Chun, "Thermodynamic Molecular Switch in Sequence-Specific Hydrophobic Interaction: Two Computational Models Compared", The Scientific World Journal, vol. 3, Article ID 564931, 18 pages, 2003. https://doi.org/10.1100/tsw.2003.16

Thermodynamic Molecular Switch in Sequence-Specific Hydrophobic Interaction: Two Computational Models Compared

Academic Editor: Robert P. Learmonth

Abstract

We have shown in our published work the existence of a thermodynamic switch in biological systems wherein a change of sign in ΔCp°(T)reaction leads to a true negative minimum in the Gibbs free energy change of reaction, and hence, a maximum in the related Keq. We have examined 35 pair-wise, sequence-specific hydrophobic interactions over the temperature range of 273–333 K, based on data reported by Nemethy and Scheraga in 1962. A closer look at a single example, the pair-wise hydrophobic interaction of leucine-isoleucine, will demonstrate the significant differences when the data are analyzed using the Nemethy-Scheraga model or treated by the Planck-Benzinger methodology which we have developed. The change in inherent chemical bond energy at 0 K, ΔH°(T0) is 7.53 kcal mol-1 compared with 2.4 kcal mol-1, while ‹ts› is 365 K as compared with 355 K, for the Nemethy-Scheraga and Planck-Benzinger model, respectively. At ‹tm›, the thermal agitation energy is about five times greater than ΔH°(T0) in the Planck-Benzinger model, that is 465 K compared to 497 K in the Nemethy-Scheraga model. The results imply that the negative Gibbs free energy minimum at a well-defined ‹ts›, where TΔS° = 0 at about 355 K, has its origin in the sequence-specific hydrophobic interactions, which are highly dependent on details of molecular structure. The Nemethy-Scheraga model shows no evidence of the thermodynamic molecular switch that we have found to be a universal feature of biological interactions. The Planck-Benzinger method is the best known for evaluating the innate temperature-invariant enthalpy, ΔH°(T0), and provides for better understanding of the heat of reaction for biological molecules.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views84
Downloads527
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.