The Scientific World Journal

The Scientific World Journal / 2007 / Article
Special Issue

Frontiers in Addiction Research

View this Special Issue

Mini-Review Article | Open Access

Volume 7 |Article ID 746941 | 14 pages | https://doi.org/10.1100/tsw.2007.230

Opioid-Induced Glial Activation: Mechanisms of Activation and Implications for Opioid Analgesia, Dependence, and Reward

Academic Editor: S. Ferre
Received20 Jun 2007
Revised03 Aug 2007
Accepted05 Aug 2007

Abstract

This review will introduce the concept of toll-like receptor (TLR)–mediated glial activation as central to all of the following: neuropathic pain, compromised acute opioid analgesia, and unwanted opioid side effects (tolerance, dependence, and reward). Attenuation of glial activation has previously been demonstrated both to alleviate exaggerated pain states induced by experimental pain models and to reduce the development of opioid tolerance. Here we demonstrate that selective acute antagonism of TLR4 results in reversal of neuropathic pain as well as potentiation of opioid analgesia. Attenuating central nervous system glial activation was also found to reduce the development of opioid dependence, and opioid reward at a behavioral (conditioned place preference) and neurochemical (nucleus accumbens microdialysis of morphine-induced elevations in dopamine) level of analysis. Moreover, a novel antagonism of TLR4 by (+)- and (˗)-isomer opioid antagonists has now been characterized, and both antiallodynic and morphine analgesia potentiating activity shown. Opioid agonists were found to also possess TLR4 agonistic activity, predictive of glial activation. Targeting glial activation is a novel and as yet clinically unexploited method for treatment of neuropathic pain. Moreover, these data indicate that attenuation of glial activation, by general or selective TLR antagonistic mechanisms, may also be a clinical method for separating the beneficial (analgesia) and unwanted (tolerance, dependence, and reward) actions of opioids, thereby improving the safety and efficacy of their use.


More related articles

285 Views | 2612 Downloads | 236 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.