Table of Contents Author Guidelines Submit a Manuscript
TheScientificWorldJOURNAL
Volume 11, Pages 2491-2505
http://dx.doi.org/10.1100/2011/517152
Review Article

Midkine in Inflammation

1Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität, 80336 Munich, Germany
2Department of Health Science, Faculty of Psychological and Physical Science, Aichi Gakuin University, Nisshin, Aichi 470-0195, Japan

Received 24 October 2011; Accepted 7 November 2011

Academic Editor: Marco Antonio Cassatella

Copyright © 2011 Ludwig T. Weckbach et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Kadomatsu, M. Tomomura, and T. Muramatsu, “cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis,” Biochemical and Biophysical Research Communications, vol. 3, pp. 1312–1318, 1988. View at Google Scholar
  2. T. O'Brien, D. Cranston, S. Fuggle, R. Bicknell, and A. L. Harris, “The angiogenic factor midkine is expressed in bladder cancer, and overexpression correlates with a poor outcome in patients with invasive cancers,” Cancer Research, vol. 56, no. 11, pp. 2515–2518, 1996. View at Google Scholar · View at Scopus
  3. M. Ruan, T. Ji, Z. Wu, J. Zhou, and C. Zhang, “Evaluation of expression of midkine in oral squamous cell carcinoma and its correlation with tumour angiogenesis,” International Journal of Oral and Maxillofacial Surgery, vol. 36, no. 2, pp. 159–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Maeda, H. Shinchi, H. Kurahara et al., “Clinical significance of midkine expression in pancreatic head carcinoma,” British Journal of Cancer, vol. 97, no. 3, pp. 405–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. A. Mashour, N. Ratner, G. A. Khan, H. L. Wang, R. L. Martuza, and A. Kurtz, “The angiogenic factor midkine is aberrantly expressed in NF1-deficient Schwann cells and is a mitogen for neurofibroma-derived cells,” Oncogene, vol. 20, no. 1, pp. 97–105, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Aridome, J. Tsutsui, S. Takao et al., “Increased Midkine gene expression in human gastrointestinal cancers,” Japanese Journal of Cancer Research, vol. 86, no. 7, pp. 655–661, 1995. View at Google Scholar · View at Scopus
  7. G. E. Stoica, A. Kuo, C. Powers et al., “Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types,” Journal of Biological Chemistry, vol. 277, no. 39, pp. 35990–35998, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Choudhuri, H. T. Zhang, S. Donnini, M. Ziche, and R. Bicknell, “An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis,” Cancer Research, vol. 57, no. 9, pp. 1814–1819, 1997. View at Google Scholar · View at Scopus
  9. M. Muramaki, H. Miyake, I. Hara, and S. Kamidono, “Introduction of midkine gene into human bladder cancer cells enhances their malignant phenotype but increases their sensitivity to antiangiogenic therapy,” Clinical Cancer Research, vol. 9, no. 14, pp. 5152–5160, 2003. View at Google Scholar · View at Scopus
  10. T. Kosugi, Y. Yuzawa, W. Sato et al., “Midkine is involved in tubulointerstitial inflammation associated with diabetic nephropathy,” Laboratory Investigation, vol. 87, no. 9, pp. 903–913, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Maruyama, H. Muramatsu, N. Ishiguro, and T. Muramatsu, “Midkine, a heparin-binding growth factor, is fundamentally involved in the pathogenesis of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 50, no. 5, pp. 1420–1429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Krzystek-Korpacka, K. Neubauer, and M. Matusiewicz, “Circulating midkine in Crohn's disease: clinical implications,” Inflammatory Bowel Diseases, vol. 16, no. 2, pp. 208–215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Wang, H. Takeuchi, Y. Sonobe et al., “Inhibition of midkine alleviates experimental autoimmune encephalomyelitis through the expansion of regulatory T cell population,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, pp. 3915–3920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Kadomatsu, R. P. Hung, T. Suganuma, F. Murata, and T. Muramatsu, “A retinoic acid responsive gene MK found in the teratocarcinoma system is expressed in spatially and temporally controlled manner during mouse embryogenesis,” Journal of Cell Biology, vol. 110, no. 3, pp. 607–616, 1990. View at Google Scholar · View at Scopus
  15. T. Kaname, A. Kuwano, I. Murano, K. Uehara, T. Muramatsu, and T. Kajii, “Midkine gene (MDK), a gene for prenatal differentiation and neuroregulation, maps to band 11p11.2 by fluorescence in situ hybridization,” Genomics, vol. 17, no. 2, pp. 514–515, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Simon-Chazottes, S. Matsubara, T. Miyauchi, T. Muramatsu, and J. L. Guenet, “Chromosomal localization of two cell surface-associated molecules of potential importance in development: Midkine (Mdk) and basigin (Bsg),” Mammalian Genome, vol. 2, no. 4, pp. 269–271, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. P. R. Reynolds, M. L. Mucenski, T. D. Le Cras, W. C. Nichols, and J. A. Whitsett, “Midkine is regulated by hypoxia and causes pulmonary vascular remodeling,” Journal of Biological Chemistry, vol. 279, no. 35, pp. 37124–37132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Adachi, S. Matsubara, C. Pedraza et al., “Midkine as a novel target gene for the Wilms' tumor suppressor gene (WT1),” Oncogene, vol. 13, no. 10, pp. 2197–2203, 1996. View at Google Scholar · View at Scopus
  19. S. Matsubara, M. Take, C. Pedraza, and T. Muramatsu, “Mapping and characterization of a retinoic acid-responsive enhancer of midkine, a novel heparin-binding growth/differentiation factor with neurotrophic activity,” Journal of Biochemistry, vol. 115, no. 6, pp. 1088–1096, 1994. View at Google Scholar · View at Scopus
  20. W. Iwasaki, K. Nagata, H. Hatanaka et al., “Solution structure of midkine, a new heparin-binding growth factor,” EMBO Journal, vol. 16, no. 23, pp. 6936–6946, 1997. View at Google Scholar · View at Scopus
  21. L. Fabri, H. Maruta, H. Muramatsu et al., “Structural characterisation of native and recombinant forms of the neurotrophic cytokine MK,” Journal of Chromatography, vol. 646, no. 1, pp. 213–225, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Asai, K. Watanabe, K. Ichihara-Tanaka et al., “Identification of heparin-binding sites in midkine and their role in neurite-promotion,” Biochemical and Biophysical Research Communications, vol. 236, no. 1, pp. 66–70, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Muramatsu, T. Inui, T. Kimura et al., “Localization of heparin-binding, neurite outgrowth and antigenic regions in midkine molecule,” Biochemical and Biophysical Research Communications, vol. 203, no. 2, pp. 1131–1139, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Kojima, T. Inui, T. Kimura et al., “Synthetic peptides derived from midkine enhance plasminogen activator activity in bovine aortic endothelial cells,” Biochemical and Biophysical Research Communications, vol. 206, no. 2, pp. 468–473, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Muramatsu and T. Muramatsu, “Purification of recombinant midkine and examination of its biological activities: Functional comparison of new heparin binding factors,” Biochemical and Biophysical Research Communications, vol. 177, no. 2, pp. 652–658, 1991. View at Google Scholar · View at Scopus
  26. S. Kojima, T. Inui, H. Muramatsu et al., “Dimerization of midkine by tissue transglutaminase and its functional implication,” Journal of Biological Chemistry, vol. 272, no. 14, pp. 9410–9416, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Kojima, H. Muramatsu, H. Amanuma, and T. Muramatsu, “Midkine enhances fibrinolytic activity of bovine endothelial cells,” Journal of Biological Chemistry, vol. 270, no. 16, pp. 9590–9596, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Kosugi, Y. Yuzawa, W. Sato et al., “Growth factor midkine is involved in the pathogenesis of diabetic nephropathy,” American Journal of Pathology, vol. 168, no. 1, pp. 9–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Sato, K. Kadomatsu, Y. Yuzawa et al., “Midkine is involved in neutrophil infiltration into the tubulointerstitium in ischemic renal injury,” Journal of Immunology, vol. 167, no. 6, pp. 3463–3469, 2001. View at Google Scholar · View at Scopus
  30. W. Sato, Y. Takei, Y. Yuzawa, S. Matsuo, K. Kadomatsu, and T. Muramatsu, “Midkine antisense oligodeoxyribonucleotide inhibits renal damage induced by ischemic reperfusion,” Kidney International, vol. 67, no. 4, pp. 1330–1339, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Kawai, W. Sato, Y. Yuzawa et al., “Lack of the growth factor midkine enhances survival against cisplatin-induced renal damage,” American Journal of Pathology, vol. 165, no. 5, pp. 1603–1612, 2004. View at Google Scholar · View at Scopus
  32. T. Takada, K. Toriyama, H. Muramatsu, X. J. Song, S. Torii, and T. Muramatsu, “Midkine, a retinoic acid-inducible heparin-binding cytokine in inflammatory responses: chemotactic activity to neutrophils and association with inflammatory synovitis,” Journal of Biochemistry, vol. 122, no. 2, pp. 453–458, 1997. View at Google Scholar · View at Scopus
  33. H. Banno, Y. Takei, T. Muramatsu, K. Komori, and K. Kadomatsu, “Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts,” Journal of Vascular Surgery, vol. 44, no. 3, pp. 633–641, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Narita, S. Chen, K. Komori, and K. Kadomatsu, “Midkine is expressed by infiltrating macrophages in in-stent restenosis in hypercholesterolemic rabbits,” Journal of Vascular Surgery, vol. 47, no. 6, pp. 1322–1329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Horiba, K. Kadomatsu, E. Nakamura et al., “Neointima formation in a restenosis model is suppressed in midkine- deficient mice,” Journal of Clinical Investigation, vol. 105, no. 4, pp. 489–495, 2000. View at Google Scholar · View at Scopus
  36. T. Yuki, S. Ishihara, M. A. K. Rumi et al., “Increased expression of midkine in the rat colon during healing of experimental colitis,” American Journal of Physiology, Gastrointestinal and Liver Physiology, vol. 291, no. 4, pp. G735–G743, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Liu, G. A. Mashour, H. D. Webster, and A. Kurtz, “Basic FGF and FGF receptor 1 are expressed in microglia during experimental autoimmune encephalomyelitis: temporally distinct expression of midkine and pleiotrophin,” GLIA, vol. 24, no. 4, pp. 390–397, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Uehara, S. Matsubara, K. Kadomatsu, J. Tsutsui, and T. Muramatsu, “Genomic structure of human midkine (MK), a retinoic acid-responsive growth/differentiation factor,” Journal of Biochemistry, vol. 111, no. 5, pp. 563–567, 1992. View at Google Scholar · View at Scopus
  39. Y. S. Li, P. G. Milner, A. K. Chauhan et al., “Cloning and expression of a developmentally regulated protein that induces mitogenic and neurite outgrowth activity,” Science, vol. 250, no. 4988, pp. 1690–1694, 1990. View at Google Scholar · View at Scopus
  40. J. I. Tsutsui, K. Uehara, K. Kadomatsu, S. Matsubara, and T. Muramatsu, “A new family of heparin-binding factors: Strong conservation of midkine (MK) sequences between the human and the mouse,” Biochemical and Biophysical Research Communications, vol. 176, no. 2, pp. 792–797, 1991. View at Google Scholar · View at Scopus
  41. H. Rauvala, “An 18-kd heparin-binding protein of developing brain that is distinct from fibroblast growth factors,” EMBO Journal, vol. 8, no. 10, pp. 2933–2941, 1989. View at Google Scholar · View at Scopus
  42. C. Englund, A. Birve, L. Falileeva, C. Grabbe, and R. H. Palmer, “Miple1 and miple2 encode a family of MK/PTN homologues in Drosophila melanogaster,” Development Genes and Evolution, vol. 216, no. 1, pp. 10–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Muramatsu, “Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases,” Proceedings of the Japan Academy Series B: Physical and Biological Sciences, vol. 86, no. 4, pp. 410–425, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Bouyain and D. J. Watkins, “The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 6, pp. 2443–2448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Maeda, K. Ichihara-Tanaka, T. Kimura, K. Kadomatsu, T. Muramatsu, and M. Noda, “A receptor-like protein-tyrosine phosphatase PTPζ/RPTPβ binds a heparin-binding growth factor midkine: involvement of arginine 78 of midkine in the high affinity binding to PTPζ,” Journal of Biological Chemistry, vol. 274, no. 18, pp. 12474–12479, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Qi, S. Ikematsu, N. Maeda et al., “Haptotactic migration induced by midkine: Involvement of protein-tyrosine phosphatase ζ, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase,” Journal of Biological Chemistry, vol. 276, no. 19, pp. 15868–15875, 2001. View at Google Scholar · View at Scopus
  47. N. Sakaguchi, H. Muramatsu, K. Ichihara-Tanaka et al., “Receptor-type protein tyrosine phosphatase ζ as a component of the signaling receptor complex for midkine-dependent survival of embryonic neurons,” Neuroscience Research, vol. 45, no. 2, pp. 219–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Muramatsu, K. Zou, N. Sakaguchi, S. Ikematsu, S. Sakuma, and T. Muramatsu, “LDL receptor-related protein as a component of the midkine receptor,” Biochemical and Biophysical Research Communications, vol. 270, no. 3, pp. 936–941, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. S. H. Lee, H. N. Suh, Y. J. Lee, B. N. Seo, J. W. Ha, and H. J. Han, “Midkine prevented hypoxic injury of mouse embryonic stem cells through activation of Akt and HIF-1alpha via low-densitylipoprotein receptor-related protein-1,” Journal of Cellular Physiology. In press.
  50. G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner, “WebLogo: a sequence logo generator,” Genome Research, vol. 14, no. 6, pp. 1188–1190, 2004. View at Publisher · View at Google Scholar
  51. H. Muramatsu, P. Zou, H. Suzuki et al., “α4β1- and α6β 1-integrins are functional receptors for midkine, a heparin-binding growth factor,” Journal of Cell Science, vol. 117, no. 22, pp. 5405–5415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Huang, M. Sook-Kim, and E. Ratovitski, “Midkine promotes tetraspanin-integrin interaction and induces FAK-Stat1α pathway contributing to migration/invasiveness of human head and neck squamous cell carcinoma cells,” Biochemical and Biophysical Research Communications, vol. 377, no. 2, pp. 474–478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Güngör, H. Zander, K. E. Effenberger et al., “Notch signaling activated by replication stress-induced expression of midkine drives epithelial-mesenchymal transition and chemoresistance in pancreatic cancer,” Cancer Research, vol. 71, no. 14, pp. 5009–5019, 2011. View at Publisher · View at Google Scholar
  54. K. Ichihara-Tanaka, A. Oohira, M. Rumsby, and T. Muramatsu, “Neuroglycan C is a novel midkine receptor involved in process elongation of oligodendroglial precursor-like cells,” Journal of Biological Chemistry, vol. 281, no. 41, pp. 30857–30864, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Kaneda, A. H. Talukder, M. Ishihara, S. Hara, K. Yoshida, and T. Muramatsu, “Structural characteristics of heparin-like domain required for interaction of midkine with embryonic neurons,” Biochemical and Biophysical Research Communications, vol. 220, no. 1, pp. 108–112, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Ueoka, N. Kaneda, I. Okazaki, S. Nadanaka, T. Muramatsu, and K. Sugahara, “Neuronal cell adhesion, mediated by the heparin-binding neuroregulatory factor midkine, is specifically inhibited by chondroitin sulfate E. Structural and functional implications of the over-sulfated chondroitin sulfate,” Journal of Biological Chemistry, vol. 275, no. 48, pp. 37407–37413, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Zou, K. Zou, H. Muramatsu et al., “Glycosaminoglycan structures required for strong binding to midkine, a heparin-binding growth factor,” Glycobiology, vol. 13, no. 1, pp. 35–42, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. T. A. Mitsiadis, M. Salmivirta, T. Muramatsu et al., “Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis,” Development, vol. 121, no. 1, pp. 37–51, 1995. View at Google Scholar · View at Scopus
  59. T. Nakanishi, K. Kadomatsu, T. Okamoto et al., “Expression of syndecan-1 and -3 during embryogenesis of the central nervous system in relation to binding with midkine,” Journal of Biochemistry, vol. 121, no. 2, pp. 197–205, 1997. View at Google Scholar · View at Scopus
  60. N. Kurosawa, G. Y. Chen, K. Kadomatsu, S. Ikematsu, S. Sakuma, and T. Muramatsu, “Glypican-2 binds to midkine: the role of glypican-2 in neuronal cell adhesion and neurite outgrowth,” Glycoconjugate Journal, vol. 18, no. 6, pp. 499–507, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. D. M. Rose, “The role of the α4 integrin-paxillin interaction in regulating leukocyte trafficking,” Experimental and Molecular Medicine, vol. 38, no. 3, pp. 191–195, 2006. View at Google Scholar · View at Scopus
  62. D. Powner, P. M. Kopp, S. J. Monkley, D. R. Critchley, and F. Berditchevski, “Tetraspanin CD9 in cell migration,” Biochemical Society Transactions, vol. 39, no. 2, pp. 563–567, 2011. View at Publisher · View at Google Scholar
  63. A. Oohira, T. Shuo, Y. Tokita, K. Nakanishi, and S. Aono, “Neuroglycan C, a brain-specific part-time proteoglycan, with a particular multidomain structure,” Glycoconjugate Journal, vol. 21, no. 1-2, pp. 53–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Huang, M. O. Hoque, F. Wu, B. Trink, D. Sidransky, and E. A. Ratovitski, “Midkine induces epithelial-mesenchymal transition through Notch2/Jak2-Stat3 signaling in human keratinocytes,” Cell Cycle, vol. 7, no. 11, pp. 1613–1622, 2008. View at Google Scholar · View at Scopus
  65. A. Barreca, E. Lasorsa, L. Riera et al., “Anaplastic lymphoma kinase in human cancer,” Journal of Molecular Endocrinology, vol. 47, no. 1, pp. R11–R23, 2011. View at Publisher · View at Google Scholar
  66. G. Remuzzi, A. Schieppati, and P. Ruggenenti, “Nephropathy in patients with type 2 diabetes,” New England Journal of Medicine, vol. 346, no. 15, pp. 1145–1151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. S. E. Gabriel and K. Michaud, “Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases,” Arthritis Research and Therapy, vol. 11, no. 3, article 229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. D. L. Scott, F. Wolfe, and T. W. J. Huizinga, “Rheumatoid arthritis,” The Lancet, vol. 376, no. 9746, pp. 1094–1108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Terato, K. A. Hasty, R. A. Reife, M. A. Cremer, A. H. Kang, and J. M. Stuart, “Induction of arthritis with monoclonal antibodies to collagen,” Journal of Immunology, vol. 148, no. 7, pp. 2103–2108, 1992. View at Google Scholar · View at Scopus
  70. R. Ross, “Atherosclerosis—an inflammatory disease,” New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999. View at Publisher · View at Google Scholar
  71. M. A. Engel and M. F. Neurath, “New pathophysiological insights and modern treatment of IBD,” Journal of Gastroenterology, vol. 45, no. 6, pp. 571–583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Rentsch, A. Beham, H. J. Schlitt, and K. W. Jauch, “Crohn's disease activity index and Vienna classification—is it worthwhile to calculate before surgery?” Digestive Surgery, vol. 23, no. 4, pp. 241–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Abraham and J. H. Cho, “Inflammatory bowel disease,” New England Journal of Medicine, vol. 361, no. 21, pp. 2066–2078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Flachenecker, L. Khil, S. Bergmann et al., “Development and pilot phase of a European MS register,” Journal of Neurology, vol. 257, no. 10, pp. 1620–1627, 2010. View at Google Scholar
  75. X. Liu, D. L. Yao, C. A. Bondy et al., “Astrocytes express insulin-like growth factor-I (IGF-I) and its binding protein, IGFBP-2, during demyelination induced by experimental autoimmune encephalomyelitis,” Molecular and Cellular Neurosciences, vol. 5, no. 5, pp. 418–430, 1994. View at Publisher · View at Google Scholar · View at Scopus
  76. D. L. Yao, X. Liu, L. D. Hudson, and H. D. Webster, “Insulin-like growth factor I treatment reduces demyelination and up- regulates gene expression of myelin-related proteins in experimental autoimmune encephalomyelitis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 13, pp. 6190–6194, 1995. View at Publisher · View at Google Scholar · View at Scopus
  77. K. H. G. Mills, “Regulatory T cells: friend or foe in immunity to infection?” Nature Reviews Immunology, vol. 4, no. 11, pp. 841–855, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Brüstle, S. Heink, M. Huber et al., “The development of inflammatory TH-17 cells requires interferon-regulatory factor 4,” Nature Immunology, vol. 8, no. 9, pp. 958–966, 2007. View at Publisher · View at Google Scholar
  79. J. H. Noseworthy, C. Lucchinetti, M. Rodriguez, and B. G. Weinshenker, “Multiple sclerosis,” New England Journal of Medicine, vol. 343, no. 13, pp. 938–952, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. W. N. Gray, L. A. Denson, R. N. Baldassano, and K. A. Hommel, “Disease activity, behavioral dysfunction, and health-related quality of life in adolescents with inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 17, no. 7, pp. 1581–1586, 2011. View at Publisher · View at Google Scholar
  81. A. Davidson and B. Diamond, “Autoimmune diseases,” New England Journal of Medicine, vol. 345, no. 5, pp. 340–350, 2001. View at Google Scholar · View at Scopus