Table of Contents Author Guidelines Submit a Manuscript
TheScientificWorldJOURNAL
Volume 11, Pages 1770-1780
http://dx.doi.org/10.1100/2011/598097
Review Article

Embryonic Regulation of the Mouse Hematopoietic Niche

1Division of Hematopoietic Stem Cells, Advanced Medical Initiatives, Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
2Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
3Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia

Received 16 July 2011; Accepted 16 September 2011

Academic Editor: David Tannahill

Copyright © 2011 Daisuke Sugiyama et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Sugiyama and K. Tsuji, “Definitive hematopoiesis from endothelial cells in the mouse embryo; a simple guide,” Trends in Cardiovascular Medicine, vol. 16, no. 2, pp. 45–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. T. Fraser and M. H. Baron, “Embryonic fates for extraembryonic lineages: new perspectives,” Journal of Cellular Biochemistry, vol. 107, no. 4, pp. 586–591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Belaoussoff, S. M. Farrington, and M. H. Baron, “Hematopoietic induction and respecification of A-P identity by visceral endoderm signaling in the mouse embryo,” Development, vol. 125, no. 24, pp. 5009–5018, 1998. View at Google Scholar · View at Scopus
  4. M. A. Dyer, S. M. Farrington, D. Mohn, J. R. Munday, and M. H. Baron, “Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo,” Development, vol. 128, no. 10, pp. 1717–1730, 2001. View at Google Scholar · View at Scopus
  5. J. Palis, S. Robertson, M. Kennedy, C. Wall, and G. Keller, “Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse,” Development, vol. 126, no. 22, pp. 5073–5084, 1999. View at Google Scholar · View at Scopus
  6. J. Palis, J. Malik, K. E. McGrath, and P. D. Kingsley, “Primitive erythropoiesis in the mammalian embryo,” International Journal of Developmental Biology, vol. 54, no. 6-7, pp. 1011–1018, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. K. E. McGrath, P. D. Kingsley, A. D. Koniski, R. L. Porter, T. P. Bushnell, and J. Palis, “Enucleation of primitive erythroid cells generates a transient population of "pyrenocytes" in the mammalian fetus,” Blood, vol. 111, no. 4, pp. 2409–2417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. T. Fraser, J. Isern, and M. H. Baron, “Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression,” Blood, vol. 109, no. 1, pp. 343–352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Isern, Z. He, S. T. Fraser et al., “Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo,” Blood, vol. 117, no. 18, pp. 4924–4934, 2011. View at Publisher · View at Google Scholar
  10. D. M. Adelman, E. Maltepe, and M. C. Simon, “Multilineage embryonic hematopoiesis requires hypoxic ARNT activity,” Genes and Development, vol. 13, no. 19, pp. 2478–2483, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. M. C. Yoder, K. Hiatt, P. Dutt, P. Mukherjee, D. M. Bodine, and D. Orlic, “Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac,” Immunity, vol. 7, no. 3, pp. 335–344, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Sugiyama, M. Ogawa, K. Nakao et al., “B cell potential can be obtained from pre-circulatory yolk sac, but with low frequency,” Developmental Biology, vol. 301, no. 1, pp. 53–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. T. Lux, M. Yoshimoto, K. McGrath, S. J. Conway, J. Palis, and M. C. Yoder, “All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac,” Blood, vol. 111, no. 7, pp. 3435–3438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. E. Rhodes, C. Gekas, Y. Wang et al., “The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation,” Cell Stem Cell, vol. 2, no. 3, pp. 252–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. C. Yoder, K. Hiatt, and P. Mukherjee, “In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 13, pp. 6776–6780, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. S. T. Fraser, M. Ogawa, R. T. Yu, S. Nishikawa, M. C. Yoder, and S. I. Nishikawa, “Definitive hematopoietic commitment within the embryonic vascular endothelial-cadherin+ population,” Experimental Hematology, vol. 30, no. 9, pp. 1070–1078, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. I. M. Samokhvalov, N. I. Samokhvalova, and S. I. Nishikawa, “Cell tracing shows the contribution of the yolk sac to adult haematopoiesis,” Nature, vol. 446, no. 7139, pp. 1056–1061, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Kumano, S. Chiba, A. Kunisato et al., “Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells,” Immunity, vol. 18, no. 5, pp. 699–711, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Yoon, B. K. Koo, R. Song et al., “Mind bomb-1 is essential for intraembryonic hematopoiesis in the aortic endothelium and the subaortic patches,” Molecular and Cellular Biology, vol. 28, no. 15, pp. 4794–4804, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. North, T. L. Gu, T. Stacy et al., “Cbfa2 is required for the formation of intra-aortic hematopoietic clusters,” Development, vol. 126, no. 11, pp. 2563–2575, 1999. View at Google Scholar · View at Scopus
  21. M. Fleury, L. Petit-Cocault, D. Clay, and M. Souyri, “Mpl receptor defect leads to earlier appearance of hematopoietic cells/hematopoietic stem cells in the Aorta-Gonad-Mesonephros region, with increased apoptosis,” International Journal of Developmental Biology, vol. 54, no. 6-7, pp. 1067–1074, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Orelio, E. Haak, M. Peeters, and E. Dzierzak, “Interleukin-1 mediated hematopoietic cell regulation in the aorta-gonad-mesonephros region of the mouse embryo,” Blood, vol. 112, no. 13, pp. 4895–4904, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Sasaki, C. Mizuochi, Y. Horio, K. Nakao, K. Akashi, and D. Sugiyama, “Regulation of hematopoietic cell clusters in the placental niche through SCF/Kit signaling in embryonic mouse,” Development, vol. 137, no. 23, pp. 3941–3952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. K. A. Mikkola, C. Gekas, S. H. Orkin, and F. Dieterlen-Lievre, “Placenta as a site for hematopoietic stem cell development,” Experimental Hematology, vol. 33, no. 9, pp. 1048–1054, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Alvarez-Silva, P. Belo-Diabangouaya, J. Salaün, and F. Dieterlen-Lièvre, “Mouse placenta is a major hematopoietic organ,” Development, vol. 130, no. 22, pp. 5437–5444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Gekas, F. Dieterlen-Lièvre, S. H. Orkin, and H. K. A. Mikkola, “The placenta is a niche for hematopoietic stem cells,” Developmental Cell, vol. 8, no. 3, pp. 365–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Ottersbach and E. Dzierzak, “The murine placenta contains hematopoietic stem cells within the vascular labyrinth region,” Developmental Cell, vol. 8, no. 3, pp. 377–387, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Okuda, J. Van Deursen, S. W. Hiebert, G. Grosveld, and J. R. Downing, “AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis,” Cell, vol. 84, no. 2, pp. 321–330, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. Q. Wang, T. Stacy, J. D. Miller et al., “The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo,” Cell, vol. 87, pp. 697–708, 1996. View at Google Scholar
  30. C. Robin, K. Ottersbach, C. Durand et al., “An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells,” Developmental Cell, vol. 11, no. 2, pp. 171–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. L. Medvinsky and E. A. Dzierzak, “Development of the definitive hematopoietic hierarchy in the mouse,” Developmental and Comparative Immunology, vol. 22, no. 3, pp. 289–301, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. G. R. Johnson and R. O. Jones, “Differentiation of the mammalian hepatic primordium in vitro. I. Morphogenesis and the onset of haematopoiesis,” Journal of Embryology and Experimental Morphology, vol. 30, no. 1, pp. 83–96, 1973. View at Google Scholar · View at Scopus
  33. G. R. Johnson and M. A. S. Moore, “Role of stem cell migration in initiation of mouse foetal liver haemopoiesis,” Nature, vol. 258, no. 5537, pp. 726–728, 1975. View at Google Scholar · View at Scopus
  34. H. Ema and H. Nakauchi, “Expansion of hematopoietic stem cells in the developing liver of a mouse embryo,” Blood, vol. 95, no. 7, pp. 2284–2288, 2000. View at Google Scholar · View at Scopus
  35. D. Sugiyama, K. I. Arai, and K. Tsuji, “Definitive hematopoiesis from acetyl LDL incorporating endothelial cells in the mouse embryo,” Stem Cells and Development, vol. 14, no. 6, pp. 687–696, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Houssaint, “Differentiation of the mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line,” Cell Differentiation, vol. 10, no. 5, pp. 243–252, 1981. View at Publisher · View at Google Scholar · View at Scopus
  37. C. A. Cudenne and G. R. Johnson, “Presence of multipotential hemopoietic cells in teratocarcinoma cultures,” Journal of Embryology and Experimental Morphology, vol. 61, pp. 51–59, 1981. View at Google Scholar
  38. H. G. Kim, C. G. De Guzman, C. Scott Swindle et al., “The ETS family transcription factor PU.1 is necessary for the maintenance of fetal liver hematopoietic stem cells,” Blood, vol. 104, no. 13, pp. 3894–3900, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Björnsson, N. Larsson, A. C. M. Brun et al., “Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4,” Molecular and Cellular Biology, vol. 23, no. 11, pp. 3872–3883, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Chen, P. Haviernik, K. D. Bunting, and Y. C. Yang, “Cited2 is required for normal hematopoiesis in the murine fetal liver,” Blood, vol. 110, no. 8, pp. 2889–2898, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. C. M. Carreira, S. M. Nasser, E. Di Tomaso et al., “LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis,” Cancer Research, vol. 61, no. 22, pp. 8079–8084, 2001. View at Google Scholar · View at Scopus
  42. N. Tanimizu, M. Nishikawa, H. Saito, T. Tsujimura, and A. Miyajima, “Isolation of hepatoblasts based on the expression of Dlk/Pref-1,” Journal of Cell Science, vol. 116, no. 9, pp. 1775–1786, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Sugiyama, K. Kulkeaw, C. Mizuochi, Y. Horio, and S. Okayama, “Hepatoblasts comprise a niche for fetal liver erythropoiesis through cytokine production,” Biochemical and Biophysical Research Communications, vol. 410, no. 2, pp. 301–306, 2011. View at Publisher · View at Google Scholar
  44. S. Chou and H. F. Lodish, “Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 17, pp. 7799–7804, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. R. O. Hynes and K. M. Yamada, “Fibronectins: multifunctional modular glycoproteins,” Journal of Cell Biology, vol. 95, no. 2 I, pp. 369–377, 1982. View at Google Scholar · View at Scopus
  46. M. J. Humphries, M. Obara, K. Olden, and K. M. Yamada, “Role of fibronectin in adhesion, migration, and metastasis,” Cancer Investigation, vol. 7, no. 4, pp. 373–393, 1989. View at Google Scholar · View at Scopus
  47. E. Hirsch, A. Iglesias, A. J. Potocnik, U. Hartmann, and R. Fässler, “Impaired migration but not differentiation of haematopoietic stem cells in the absence of β1 integrins,” Nature, vol. 380, no. 6570, pp. 171–175, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. S. M. Frisch and E. Ruoslahti, “Integrins and anoikis,” Current Opinion in Cell Biology, vol. 9, no. 5, pp. 701–706, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. V. P. Patel and H. F. Lodish, “A fibronectin matrix is required for differentiation of murine erythroleukemia cells into reticulocytes,” Journal of Cell Biology, vol. 105, no. 6, pp. 3105–3118, 1987. View at Google Scholar · View at Scopus
  50. M. W. Long and V. M. Dixit, “Thrombospondin functions as a cytoadhesion molecule for human hematopoietic progenitor cells,” Blood, vol. 75, no. 12, pp. 2311–2318, 1990. View at Google Scholar · View at Scopus
  51. E. S. Strobel, D. Möbest, S. Von Kleist et al., “Adhesion and migration are differentially regulated in hematopoietic progenitor cells by cytokines and extracellular matrix,” Blood, vol. 90, no. 9, pp. 3524–3532, 1997. View at Google Scholar · View at Scopus
  52. J. Taipale and J. Keski-Oja, “Growth factors in the extracellular matrix,” The FASEB Journal, vol. 11, no. 1, pp. 51–59, 1997. View at Google Scholar · View at Scopus
  53. J. Y. Bertrand, G. E. Desanti, R. Lo-Man, C. Leclerc, A. Cumano, and R. Golub, “Fetal spleen stroma drives macrophage commitment,” Development, vol. 133, no. 18, pp. 3619–3628, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Ciriza and M. E. García-Ojeda, “Expression of migration-related genes is progressively upregulated in murine Lineage-Sca-1+c-Kit+ population from the fetal to adult stages of development,” Stem Cell Research and Therapy, vol. 1, no. 2, article 14, 2010. View at Publisher · View at Google Scholar