Table of Contents Author Guidelines Submit a Manuscript
TheScientificWorldJOURNAL
Volume 11, Pages 1877-1885
http://dx.doi.org/10.1100/2011/768350
Review Article

Activation of Neutrophils by Nanoparticles

Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, H7V 1B7, Canada

Received 23 July 2011; Accepted 23 August 2011

Academic Editor: Claude Ostiguy

Copyright © 2011 David M. Goncalves et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases, vol. 2, pp. 17–71, 2007. View at Google Scholar
  2. The Royal Society, “Nanoscience and nanotechnologies: opportunities and uncertainties,” 2004, page 127.
  3. C. Ostiguy, “IRSST-Les effets à la santé reliés aux nanoparticules (Montréal: institut de Recherche Robert-Sauvé en santé et sécurité au travail ),” 2006, page 155.
  4. T. J. Webster, “Safety of Nanoparticles: From Manufacturing to medical applications,” 2009, Providence, RI, USA.
  5. J. S. Tsuji, A. D. Maynard, P. C. Howard et al., “Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles,” Toxicological Sciences, vol. 89, no. 1, pp. 42–50, 2006. View at Publisher · View at Google Scholar · View at PubMed
  6. A. D. Maynard, “Nanotechnology: the next big thing, or much ado about nothing?” Annals of Occupational Hygiene, vol. 51, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at PubMed
  7. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar
  8. EPA-Nanotechnology-White-Paper, “Nanotechnology White Paper. U.S.E.P.A. (EPA),” 2007, page 120.
  9. S. W. Edwards and M. B. Hallett, “Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis,” Immunology Today, vol. 18, no. 7, pp. 320–324, 1997. View at Publisher · View at Google Scholar
  10. A. P. Watt, B. C. Schock, and M. Ennis, “Neutrophils and eosinophils: clinical implications of their appearance, presence and disappearance in asthma and COPD,” Current Drug Targets, vol. 4, no. 4, pp. 415–423, 2005. View at Publisher · View at Google Scholar
  11. L. Ottonello, G. Frumento, N. Arduino et al., “Delayed neutrophil apoptosis induced by synovial fluid in rheumatoid arthritis: role of cytokines, estrogens, and adenosine,” Annals of the New York Academy of Sciences, vol. 966, pp. 226–231, 2002. View at Google Scholar
  12. O. J. Cordero, F. J. Salgado, A. Mera-Varela, and M. Nogueira, “Serum interleukin-12, interleukin-15, soluble CD26, and adenosine deaminase in patients with rheumatoid arthritis,” Rheumatology International, vol. 21, no. 2, pp. 69–74, 2001. View at Publisher · View at Google Scholar
  13. G. Steiner, M. Tohidast-Akrad, G. Witzmann et al., “Cytokine production by synovial T cells in rheumatoid arthritis,” Rheumatology, vol. 38, no. 3, pp. 202–213, 1999. View at Publisher · View at Google Scholar
  14. C. Ward, I. Dransfield, E. R. Chilvers, C. Haslett, and A. G. Rossi, “Pharmacological manipulation of granulocyte apoptosis: potential therapeutic targets,” Trends in Pharmacological Sciences, vol. 20, no. 12, pp. 503–509, 1999. View at Publisher · View at Google Scholar
  15. S. W. Edwards and F. Watson, “The cell biology of phagocytes,” Immunology Today, vol. 16, no. 11, pp. 508–510, 1995. View at Publisher · View at Google Scholar
  16. M. Pelletier, A. Bouchard, and D. Girard, “In vivo and in vitro roles of IL-21 in inflammation,” Journal of Immunology, vol. 173, no. 12, pp. 7521–7530, 2004. View at Google Scholar
  17. M. Pelletier and D. Girard, “Biological functions of interleukin-21 and its role in inflammation,” TheScientificWorldJournal, vol. 7, pp. 1715–1735, 2007. View at Publisher · View at Google Scholar · View at PubMed
  18. M. Hedenborg, “Titanium dioxide induced chemiluminescence of human polymorphonuclear leukocytes,” International Archives of Occupational and Environmental Health, vol. 61, no. 1-2, pp. 1–6, 1988. View at Google Scholar
  19. F. J. Papatheofanis and R. Barmada, “Polymorphonuclear leukocyte degranulation with exposure to polymethylmethacrylate nanoparticles,” Journal of Biomedical Materials Research, vol. 25, no. 6, pp. 761–771, 1991. View at Google Scholar
  20. R. H. Müller, S. Maaßen, H. Weyhers, and W. Mehnert, “Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407,” Journal of Drug Targeting, vol. 4, no. 3, pp. 161–170, 1996. View at Google Scholar
  21. B. Jovanović, L. Anastasova, E. W. Rowe, Y. Zhang, A. R. Clapp, and D. Palić, “Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820),” Ecotoxicology and Environmental Safety, vol. 74, no. 4, pp. 675–683, 2011. View at Publisher · View at Google Scholar · View at PubMed
  22. B. Jovanović, L. Anastasova, E. W. Rowe, and D. Palić, “Hydroxylated fullerenes inhibit neutrophil function in fathead minnow (Pimephales promelas Rafinesque, 1820),” Aquatic Toxicology, vol. 101, no. 2, pp. 474–482, 2011. View at Publisher · View at Google Scholar · View at PubMed
  23. R. M. Mainardes, M. P. D. Gremião, I. L. Brunetti, M. D. Luiz Fonseca, and N. M. Khalil, “Pharmaceutical nanotechnology zidovudine-loaded PLA and PLA-PEG blend nanoparticles: influence of polymer type on phagocytic uptake by polymorphonuclear cells,” Journal of Pharmaceutical Sciences, vol. 98, no. 1, pp. 257–267, 2009. View at Publisher · View at Google Scholar · View at PubMed
  24. R. Kumazawa, F. Watari, N. Takashi, Y. Tanimura, M. Uo, and Y. Totsuka, “Effects of Ti ions and particles on neutrophil function and morphology,” Biomaterials, vol. 23, no. 17, pp. 3757–3764, 2002. View at Publisher · View at Google Scholar
  25. E. Memisoglu-Bilensoy, A. L. Doğan, and A. A. Hincal, “Cytotoxic evaluation of injectable cyclodextrin nanoparticles,” Journal of Pharmacy and Pharmacology, vol. 58, no. 5, pp. 585–589, 2006. View at Publisher · View at Google Scholar · View at PubMed
  26. R. Duffin, A. E. Leitch, S. Fox, C. Haslett, and A. G. Rossi, “Targeting granulocyte apoptosis: mechanisms, models, and therapies,” Immunological Reviews, vol. 236, no. 1, pp. 28–40, 2010. View at Publisher · View at Google Scholar · View at PubMed
  27. V. Lavastre, M. Pelletier, R. Saller, K. Hostanska, and D. Girard, “Mechanisms involved in spontaneous and Viscum album agglutinin-I-induced human neutrophil apoptosis: viscum album agglutinin-I accelerates the loss of antiapoptotic Mcl-1 expression and the degradation of cytoskeletal paxillin and vimentin proteins via caspases,” Journal of Immunology, vol. 168, no. 3, pp. 1419–1427, 2002. View at Google Scholar
  28. C. Dianzani, R. Cavalli, G. P. Zara et al., “Cholesteryl butyrate solid lipid nanoparticles inhibit adhesion of human neutrophils to endothelial cells,” British Journal of Pharmacology, vol. 148, no. 5, pp. 648–656, 2006. View at Publisher · View at Google Scholar · View at PubMed
  29. M. Bartneck, H. A. Keul, S. Singh et al., “Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry,” ACS Nano, vol. 4, no. 6, pp. 3073–3086, 2010. View at Publisher · View at Google Scholar · View at PubMed
  30. M. Bartneck, H. A. Keul, Z. K. Gabriele, and J. Groll, “Phagocytosis independent extracellular nanoparticle clearance by human immune cells,” Nano Letters, vol. 10, no. 1, pp. 59–64, 2010. View at Publisher · View at Google Scholar · View at PubMed
  31. D. M. Gonçalves, S. Chiasson, and D. Girard, “Activation of human neutrophils by titanium dioxide (TiO2) nanoparticles,” Toxicology in Vitro, vol. 24, no. 3, pp. 1002–1008, 2010. View at Publisher · View at Google Scholar · View at PubMed
  32. S. J. Kang, B. M. Kim, Y. J. Lee, S. H. Hong, and H. W. Chung, “Titanium dioxide nanoparticles induce apoptosis through the JNK/p38-caspase-8-Bid pathway in phytohemagglutinin-stimulated human lymphocytes,” Biochemical and Biophysical Research Communications, vol. 386, no. 4, pp. 682–687, 2009. View at Publisher · View at Google Scholar · View at PubMed
  33. C. I. Vamanu, M. R. Cimpan, P. J. Høl, S. Sørnes, S. A. Lie, and N. R. Gjerdet, “Induction of cell death by TiO2 nanoparticles: studies on a human monoblastoid cell line,” Toxicology in Vitro, vol. 22, no. 7, pp. 1689–1696, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. D. M. Goncalves and D. Girard, “Titanium dioxide (TiO(2)) nanoparticles induce neutrophil influx and local production of several pro-inflammatory mediators in vivo,” International Immunopharmacology, vol. 11, no. 8, pp. 1109–1115, 2011. View at Google Scholar
  35. A. Srinivas, P. J. Rao, G. Selvam, P. B. Murthy, and P. N. Reddy, “Acute inhalation toxicity of cerium oxide nanoparticles in rats,” Toxicology Letters, vol. 205, no. 2, pp. 105–115, 2011. View at Publisher · View at Google Scholar · View at PubMed
  36. C. M. Sayes, K. L. Reed, and D. B. Warheit, “Nanoparticle toxicology: measurements of pulmonary hazard effects following exposures to nanoparticles,” Methods in Molecular Biology, vol. 726, pp. 313–324, 2011. View at Publisher · View at Google Scholar
  37. S. Hussain, J. A.J. Vanoirbeek, K. Luyts et al., “Lung exposure to nanoparticles modulates an asthmatic response in a mouse model,” European Respiratory Journal, vol. 37, no. 2, pp. 299–309, 2011. View at Publisher · View at Google Scholar · View at PubMed
  38. M. Roursgaard, S. S. Poulsen, L. K. Poulsen et al., “Time-response relationship of nano and micro particle induced lung inflammation. Quartz as reference compound,” Human and Experimental Toxicology, vol. 29, no. 11, pp. 915–933, 2010. View at Publisher · View at Google Scholar · View at PubMed
  39. E. M. Rossi, L. Pylkkänen, A. J. Koivisto et al., “Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice,” Toxicological Sciences, vol. 113, no. 2, pp. 422–433, 2009. View at Publisher · View at Google Scholar · View at PubMed
  40. S. T. Larsen, M. Roursgaard, K. A. Jensen, and G. D. Nielsen, “Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice,” Basic and Clinical Pharmacology and Toxicology, vol. 106, no. 2, pp. 114–117, 2010. View at Publisher · View at Google Scholar · View at PubMed
  41. N. R. Jacobsen, P. Møller, K. A. Jensen et al., “Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/-mice,” Particle and Fibre Toxicology, vol. 6, article 2, 2009. View at Publisher · View at Google Scholar · View at PubMed
  42. V. E. Kagan, N. V. Konduru, W. Feng et al., “Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation,” Nature Nanotechnology, vol. 5, no. 5, pp. 354–359, 2010. View at Publisher · View at Google Scholar · View at PubMed
  43. M. Pelletier, A. Savoie, and D. Girard, “Activation of human neutrophils by the air pollutant sodium sulfite (NA2SO3): comparison with immature promyelocytic HL-60 and DMSO-differentiated HL-60 cells reveals that NA2SO3 is a neutrophil but not a HL-60 cell agonist,” Clinical Immunology, vol. 96, no. 2, pp. 131–139, 2000. View at Publisher · View at Google Scholar · View at PubMed
  44. C. Ratthé and D. Girard, “Investigation of the interleukin (IL)-4/IL-4 receptor system in promyelocytic leukaemia PLB-985 cells during differentiation toward neutrophil-like phenotype: mechanism involved in IL-4-induced SOCS3 protein expression,” British Journal of Haematology, vol. 140, no. 1, pp. 59–70, 2008. View at Publisher · View at Google Scholar · View at PubMed