Table of Contents Author Guidelines Submit a Manuscript
TheScientificWorldJOURNAL
Volume 11, Pages 1679-1691
http://dx.doi.org/10.1100/2011/853474
Review Article

An Overview of DNA Repair in Amyotrophic Lateral Sclerosis

Section of Medical Genetics, Faculty of Medicine, University of Pisa, Via S. Giuseppe 22, 56126 Pisa, Italy

Received 13 June 2011; Accepted 2 September 2011

Academic Editor: R. E. Tanzi

Copyright © 2011 Fabio Coppedè. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Migliore and F. Coppedè, “Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases,” Mutation Research, vol. 667, no. 1-2, pp. 82–97, 2009. View at Publisher · View at Google Scholar · View at PubMed
  2. N. Ticozzi, C. Tiloca, C. Morelli et al., “Genetics of familial amyotrophic lateral sclerosis,” Archives Italiennes de Biologie, vol. 149, pp. 65–82, 2011. View at Google Scholar
  3. R. Traub, H. Mitsumoto, and L. P. Rowland, “Research advances in amyotrophic lateral sclerosis, 2009 to 2010,” Current Neurology and Neuroscience Reports, vol. 11, pp. 67–77, 2011. View at Publisher · View at Google Scholar · View at PubMed
  4. I. Puls, C. Jonnakuty, B. H. LaMonte et al., “Mutant dynactin in motor neuron disease,” Nature Genetics, vol. 33, no. 4, pp. 455–456, 2003. View at Publisher · View at Google Scholar · View at PubMed
  5. J. C. Schymick, K. Talbot, and B. J. Traynor, “Genetics of sporadic amyotrophic lateral sclerosis,” Human Molecular Genetics, vol. 16, pp. R233–R242, 2007. View at Publisher · View at Google Scholar · View at PubMed
  6. A. M. Wills, S. Cronin, A. Slowik et al., “A large-scale international meta-analysis of paraoxonase gene polymorphisms in sporadic ALS,” Neurology, vol. 73, no. 1, pp. 16–24, 2009. View at Publisher · View at Google Scholar · View at PubMed
  7. D. Lambrechts, K. Poesen, R. Fernández-Santiago et al., “Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis: increased susceptibility in male carriers of the -2578AA genotype,” Journal of Medical Genetics, vol. 46, no. 12, pp. 840–846, 2009. View at Publisher · View at Google Scholar · View at PubMed
  8. P. A. McCombe and R. D. Henderson, “Effects of gender in amyotrophic lateral sclerosis,” Gender Medicine, vol. 7, no. 6, pp. 557–570, 2010. View at Publisher · View at Google Scholar · View at PubMed
  9. G. E. Kisby, M. Ellison, and P. S. Spencer, “Content of the neurotoxins cycasin (methylazoxymethanol β-D-glucoside) and BMAA (β-N-methylamino-L-alanine) in cycad flour prepared by Guam Chamorros,” Neurology, vol. 42, no. 7, pp. 1336–1340, 1992. View at Google Scholar
  10. F. O. Johnson and W. D. Atchison, “The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis,” NeuroToxicology, vol. 30, no. 5, pp. 761–765, 2009. View at Publisher · View at Google Scholar · View at PubMed
  11. N. A. Sutedja, J. H. Veldink, K. Fischer et al., “Exposure to chemicals and metals and risk of amyotrophic lateral sclerosis: a systematic review,” Amyotrophic Lateral Sclerosis, vol. 10, no. 5-6, pp. 302–309, 2009. View at Publisher · View at Google Scholar · View at PubMed
  12. N. A. Sutedja, K. Fischer, J. H. Veldink et al., “What we truly know about occupation as a risk factor for ALS: a critical and systematic review,” Amyotrophic Lateral Sclerosis, vol. 10, no. 5-6, pp. 295–301, 2009. View at Publisher · View at Google Scholar · View at PubMed
  13. M. E. Gurney, “The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies,” Journal of the Neurological Sciences, vol. 152, no. 1, pp. S67–S73, 1997. View at Publisher · View at Google Scholar
  14. N. Shibata, “Transgenic mouse model for familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation,” Neuropathology, vol. 21, no. 1, pp. 82–92, 2001. View at Publisher · View at Google Scholar
  15. D. Sau, S. De Biasi, L. Vitellaro-Zuccarello et al., “Mutation of SOD1 in ALS: a gain of a loss of function,” Human Molecular Genetics, vol. 16, no. 13, pp. 1604–1618, 2007. View at Publisher · View at Google Scholar · View at PubMed
  16. H. Cai, X. Lin, C. Xie et al., “Loss of ALS2 function is insufficient to trigger motor neuron degeneration in knock-out mice but predisposes neurons to oxidative stress,” Journal of Neuroscience, vol. 25, no. 33, pp. 7567–7574, 2005. View at Publisher · View at Google Scholar · View at PubMed
  17. W. Duan, X. Li, J. Shi, Y. Guo, Z. Li, and C. Li, “Mutant TAR DNA-binding protein-43 induces oxidative injury in motor neuron-like cell,” Neuroscience, vol. 169, no. 4, pp. 1621–1629, 2010. View at Publisher · View at Google Scholar · View at PubMed
  18. A. Suraweera, O. J. Becherel, P. Chen et al., “Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage,” Journal of Cell Biology, vol. 177, no. 6, pp. 969–979, 2007. View at Publisher · View at Google Scholar · View at PubMed
  19. R. J. Ferrante, S. E. Browne, L. A. Shinobu et al., “Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 69, no. 5, pp. 2064–2074, 1997. View at Google Scholar
  20. G. E. Kisby, J. Milne, and C. Sweatt, “Evidence of reduced DNA repair in amyotrophic lateral sclerosis brain tissue,” NeuroReport, vol. 8, no. 6, pp. 1337–1340, 1997. View at Google Scholar
  21. H. Kikuchi, A. Furuta, K. I. Nishioka, S. O. Suzuki, Y. Nakabeppu, and T. Iwaki, “Impairment of mitochondrial DNA repair enzymes against accumulation of 8-oxo-guanine in the spinal motor neurons of amyotrophic lateral sclerosis,” Acta Neuropathologica, vol. 103, no. 4, pp. 408–414, 2002. View at Publisher · View at Google Scholar · View at PubMed
  22. L. Weissman, N. C. de Souza-Pinto, T. Stevnsner, and V. A. Bohr, “DNA repair, mitochondria, and neurodegeneration,” Neuroscience, vol. 145, no. 4, pp. 1318–1329, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. F. Coppedè and L. Migliore, “Dna repair in premature aging disorders and neurodegeneration,” Current Aging Science, vol. 3, no. 1, pp. 3–19, 2010. View at Publisher · View at Google Scholar
  24. A. Y. Shaikh and L. J. Martin, “DNA base-excision repair enzyme apurinic/apyrimidinic endonuclease/redox factor-1 is increased and competent in the brain and spinal cord of individuals with amyotrophic lateral sclerosis,” NeuroMolecular Medicine, vol. 2, no. 1, pp. 47–60, 2002. View at Publisher · View at Google Scholar
  25. Y. Manabe, H. Warita, T. Murakami et al., “Early decrease of redox factor-1 in spinal motor neurons of presymptomatic transgenic mice with a mutant SOD1 gene,” Brain Research, vol. 915, no. 1, pp. 104–107, 2001. View at Publisher · View at Google Scholar
  26. T. Murakami, M. Nagai, K. Miyazaki et al., “Early decrease of mitochondrial DNA repair enzymes in spinal motor neurons of presymptomatic transgenic mice carrying a mutant SOD1 gene,” Brain Research, vol. 1150, no. 1, pp. 182–189, 2007. View at Publisher · View at Google Scholar · View at PubMed
  27. S. H. Kim, J. S. Henkel, D. R. Beers et al., “PARP expression is increased in astrocytes but decreased in motor neurons in the spinal cord of sporadic ALS patients,” Journal of Neuropathology and Experimental Neurology, vol. 62, no. 1, pp. 88–103, 2003. View at Google Scholar
  28. S. H. Kim, J. I. Engelhardt, J. S. Henkel et al., “Widespread increased expression of the DNA repair enzyme PARP in brain in ALS,” Neurology, vol. 62, no. 2, pp. 319–322, 2004. View at Google Scholar
  29. M. C. de Waard, I. van der Pluijm, N. Zuiderveen Borgesius et al., “Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice,” Acta Neuropathologica, vol. 120, no. 4, pp. 461–475, 2010. View at Publisher · View at Google Scholar · View at PubMed
  30. A. B. Robertson, A. Klungland, T. Rognes, and I. Leiros, “Base excision repair: the long and short of it,” Cellular and Molecular Life Sciences, vol. 66, no. 6, pp. 981–993, 2009. View at Publisher · View at Google Scholar · View at PubMed
  31. D. M. Wilson III and V. A. Bohr, “The mechanics of base excision repair, and its relationship to aging and disease,” DNA Repair, vol. 6, no. 4, pp. 544–559, 2007. View at Publisher · View at Google Scholar · View at PubMed
  32. P. Liu and B. Demple, “DNA repair in mammalian mitochondria: much more than we thought?” Environmental and Molecular Mutagenesis, vol. 51, no. 5, pp. 417–426, 2010. View at Publisher · View at Google Scholar · View at PubMed
  33. S. C. Barber and P. J. Shaw, “Oxidative stress in ALS: key role in motor neuron injury and therapeutic target,” Free Radical Biology and Medicine, vol. 48, no. 5, pp. 629–641, 2010. View at Publisher · View at Google Scholar · View at PubMed
  34. M. L. Fishel, M. R. Vasko, and M. R. Kelley, “DNA repair in neurons: so if they don't divide what's to repair?” Mutation Research, vol. 614, no. 1-2, pp. 24–36, 2007. View at Publisher · View at Google Scholar · View at PubMed
  35. M. Bogdanov, R. H. Brown, W. Matson et al., “Increased oxidative damage to DNA in ALS patients,” Free Radical Biology and Medicine, vol. 29, no. 7, pp. 652–658, 2000. View at Publisher · View at Google Scholar
  36. N. Aguirre, M. F. Beal, W. R. Matson, and M. B. Bogdanov, “Increased oxidative damage to DNA in an animal model of amyotrophic lateral sclerosis,” Free Radical Research, vol. 39, no. 4, pp. 383–388, 2005. View at Publisher · View at Google Scholar
  37. Y. Ihara, K. Nobukuni, H. Takata, and T. Hayabara, “Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation,” Neurological Research, vol. 27, no. 1, pp. 105–108, 2005. View at Publisher · View at Google Scholar · View at PubMed
  38. H. Warita, T. Hayashi, T. Murakami, Y. Manabe, and K. Abe, “Oxidative damage to mitochondrial DNA in spinal motoneurons of transgenic ALS mice,” Molecular Brain Research, vol. 89, no. 1-2, pp. 147–152, 2001. View at Publisher · View at Google Scholar
  39. L. J. Martin, Z. Liu, K. Chen et al., “Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death,” Journal of Comparative Neurology, vol. 500, no. 1, pp. 20–46, 2007. View at Publisher · View at Google Scholar · View at PubMed
  40. G. M. Borthwick, M. A. Johnson, P. G. Ince, P. J. Shaw, and D. M. Turnbull, “Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death,” Annals of Neurology, vol. 46, no. 5, pp. 787–790, 1999. View at Publisher · View at Google Scholar
  41. T. Murata, C. Ohtsuka, and Y. Terayama, “Increased mitochondrial oxidative damage and oxidative DNA damage contributes to the neurodegenerative process in sporadic amyotrophic lateral sclerosis,” Free Radical Research, vol. 42, no. 3, pp. 221–225, 2008. View at Publisher · View at Google Scholar · View at PubMed
  42. L. F. Barbosa, F. M. Cerqueira, A. F. Macedo et al., “Increased SOD1 association with chromatin, DNA damage, p53 activation, and apoptosis in a cellular model of SOD1-linked ALS,” Biochimica et Biophysica Acta, vol. 1802, pp. 462–471, 2010. View at Google Scholar
  43. W. G. Bradley and F. Krasin, “A new hypothesis of the etiology of amyotrophic lateral sclerosis. The DNA hypothesis,” Archives of Neurology, vol. 39, no. 11, pp. 677–680, 1982. View at Google Scholar
  44. R. Tandan, S. H. Robison, J. S. Munzer, and W. G. Bradley, “Deficient DNA repair in amyotrophic lateral sclerosis cells,” Journal of the Neurological Sciences, vol. 79, no. 1-2, pp. 189–203, 1987. View at Google Scholar
  45. W. G. Bradley, S. H. Robison, and R. Tandan, “Deficient repair of alkylation damage of DNA in Alzheimer's disease and amyotrophic lateral sclerosis cells,” Advances in Experimental Medicine and Biology, vol. 209, pp. 3–6, 1987. View at Google Scholar
  46. Z. L. Olkowski, “Mutant AP endonuclease in patients with amyotrophic lateral sclerosis,” NeuroReport, vol. 9, no. 2, pp. 239–242, 1998. View at Google Scholar
  47. C. Hayward, S. Colville, R. J. Swingler, and D. J. H. Brock, “Molecular genetic analysis of the APEX nuclease gene in amyotrophic lateral sclerosis,” Neurology, vol. 52, no. 9, pp. 1899–1901, 1999. View at Google Scholar
  48. J. Tomkins, S. Dempster, S. J. Banner, M. R. Cookson, and P. J. Shaw, “Screening of AP endonuclease as a candidate gene for amyotrophic lateral sclerosis (ALS),” NeuroReport, vol. 11, no. 8, pp. 1695–1697, 2000. View at Google Scholar
  49. M. J. Greenway, M. D. Alexander, S. Ennis et al., “A novel candidate region for ALS on chromosome 14q11.2,” Neurology, vol. 63, no. 10, pp. 1936–1938, 2004. View at Google Scholar
  50. F. Coppedè, A. Lo Gerfo, C. Carlesi et al., “Lack of association between the APEX1 Asp148Glu polymorphism and sporadic amyotrophic lateral sclerosis,” Neurobiology of Aging, vol. 31, no. 2, pp. 353–355, 2010. View at Publisher · View at Google Scholar · View at PubMed
  51. F. Coppedè, M. Mancuso, A. Lo Gerfo et al., “Association of the hOGG1 Ser326Cys polymorphism with sporadic amyotrophic lateral sclerosis,” Neuroscience Letters, vol. 420, no. 2, pp. 163–168, 2007. View at Publisher · View at Google Scholar · View at PubMed
  52. F. Coppedè, F. Migheli, A. Lo Gerfo et al., “Association study between XRCC1 gene polymorphisms and sporadic amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis, vol. 11, no. 1-2, pp. 122–124, 2010. View at Publisher · View at Google Scholar · View at PubMed
  53. F. Fang, D. M. Umbach, Z. Xu et al., “No association between DNA repair gene XRCC1 and amyotrophic lateral sclerosis,” Neurobiology of Aging. In Press. View at Publisher · View at Google Scholar · View at PubMed
  54. C. Shao, S. Xiong, G. M. Li et al., “Altered 8-oxoguanine glycosylase in mild cognitive impairment and late-stage Alzheimer's disease brain,” Free Radical Biology and Medicine, vol. 45, no. 6, pp. 813–819, 2008. View at Publisher · View at Google Scholar · View at PubMed
  55. J. W. Hill, J. J. Hu, and M. K. Evans, “OGG1 is degraded by calpain following oxidative stress and cisplatin exposure,” DNA Repair, vol. 7, no. 4, pp. 648–654, 2008. View at Publisher · View at Google Scholar · View at PubMed
  56. N. Gueven, P. Chen, J. Nakamura et al., “A subgroup of spinocerebellar ataxias defective in DNA damage responses,” Neuroscience, vol. 145, no. 4, pp. 1418–1425, 2007. View at Publisher · View at Google Scholar · View at PubMed
  57. S. Y. Kao, “Regulation of DNA repair by Parkin,” Biochemical and Biophysical Research Communications, vol. 382, pp. 321–325, 2009. View at Publisher · View at Google Scholar
  58. O. Rothfuss, H. Fischer, T. Hasegawa et al., “Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair,” Human Molecular Genetics, vol. 18, no. 20, pp. 3832–3850, 2009. View at Publisher · View at Google Scholar · View at PubMed
  59. G. Davidzon, P. Greene, M. Mancuso et al., “Early-onset familial parkinsonism due to POLG mutations,” Annals of Neurology, vol. 59, no. 5, pp. 859–862, 2006. View at Publisher · View at Google Scholar · View at PubMed
  60. A. M. Remes, R. Hinttala, M. Kärppä et al., “Parkinsonism associated with the homozygous W748S mutation in the POLG1 gene,” Parkinsonism and Related Disorders, vol. 14, no. 8, pp. 652–654, 2008. View at Publisher · View at Google Scholar · View at PubMed
  61. J. Eerola, P. T. Luoma, T. Peuralinna et al., “POLG1 polyglutamine tract variants associated with Parkinson's disease,” Neuroscience Letters, vol. 477, no. 1, pp. 1–5, 2010. View at Publisher · View at Google Scholar · View at PubMed
  62. G. Mao, X. Pan, B. B. Zhu et al., “Identification and characterization of OGG1 mutations in patients with Alzheimer's disease,” Nucleic Acids Research, vol. 35, no. 8, pp. 2759–2766, 2007. View at Publisher · View at Google Scholar · View at PubMed
  63. F. Coppedè, M. Mancuso, A. Lo Gerfo et al., “A Ser326Cys polymorphism in the DNA repair gene hOGG1 is not associated with sporadic Alzheimer's disease,” Neuroscience Letters, vol. 414, no. 3, pp. 282–285, 2007. View at Publisher · View at Google Scholar · View at PubMed
  64. H. Parildar-Karpuzoǧlu, S. Doǧru-Abbasoǧlu, H. A. Hanagasi et al., “Single nucleotide polymorphisms in base-excision repair genes hOGG1, APE1 and XRCC1 do not alter risk of Alzheimer's disease,” Neuroscience Letters, vol. 442, no. 3, pp. 287–291, 2008. View at Publisher · View at Google Scholar · View at PubMed
  65. Y. Qian, W. Chen, J. Wu et al., “Association of polymorphism of DNA repair gene XRCC1 with sporadic late-onset Alzheimer's disease and age of onset in elderly Han Chinese,” Journal of the Neurological Sciences, vol. 295, no. 1-2, pp. 62–65, 2010. View at Publisher · View at Google Scholar · View at PubMed
  66. F. Coppedè, “Variants and polymorphisms of DNA base excision repair genes and Alzheimer's disease,” Journal of the Neurological Sciences, vol. 300, no. 1-2, pp. 200–201, 2011. View at Publisher · View at Google Scholar · View at PubMed
  67. F. Coppedè, R. Ceravolo, F. Migheli et al., “The hOGG1 Ser326Cys polymorphism is not associated with sporadic Parkinson's disease,” Neuroscience Letters, vol. 473, no. 3, pp. 248–251, 2010. View at Publisher · View at Google Scholar · View at PubMed
  68. J. Infante, J. Llorca, I. Mateo et al., “Interaction between poly(ADP-ribose) polymerase 1 and interleukin 1A genes is associated with Alzheimer's disease risk,” Dementia and Geriatric Cognitive Disorders, vol. 23, no. 4, pp. 215–218, 2007. View at Publisher · View at Google Scholar · View at PubMed
  69. J. Infante, P. Sánchez-Juan, I. Mateo et al., “Poly (ADP-ribose) polymerase-1 (PARP-1) genetic variants are protective against Parkinson's disease,” Journal of the Neurological Sciences, vol. 256, no. 1-2, pp. 68–70, 2007. View at Publisher · View at Google Scholar · View at PubMed
  70. H. P. Liu, W. Y. Lin, B. T. Wu et al., “Evaluation of the poly(ADP-ribose) polymerase-1 gene variants in Alzheimer's disease,” Journal of Clinical Laboratory Analysis, vol. 24, no. 3, pp. 182–186, 2010. View at Publisher · View at Google Scholar · View at PubMed
  71. I. V. Kovtun, Y. Liu, M. Bjoras, A. Klungland, S. H. Wilson, and C. T. McMurray, “OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells,” Nature, vol. 447, no. 7143, pp. 447–452, 2007. View at Publisher · View at Google Scholar · View at PubMed
  72. F. B. Briggs, B. A. Goldstein, J.L. McCauley et al., “Variation within DNA repair pathway genes and risk of multiple sclerosis,” The American Journal of Epidemiology, vol. 172, pp. 217–224, 2010. View at Google Scholar