Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 109432, 9 pages
http://dx.doi.org/10.1100/2012/109432
Research Article

Lithium-Acetate-Mediated Biginelli One-Pot Multicomponent Synthesis under Solvent-Free Conditions and Cytotoxic Activity against the Human Lung Cancer Cell Line A549 and Breast Cancer Cell Line MCF7

Department of Chemistry, Faculty of Engineering and Technology, Mody Institute of Technology and Science, Lakshmangarh 332311, Rajasthan, India

Received 12 October 2011; Accepted 22 November 2011

Academic Editor: Robert Zakrzewski

Copyright © 2012 Harshita Sachdeva and Diksha Dwivedi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Various Biginelli compounds (dihydropyrimidinones) have been synthesized efficiently and in high yields under mild, solvent-free, and eco-friendly conditions in a one-pot reaction of 1,3-dicarbonyl compounds, aldehydes, and urea/thiourea/acetyl thiourea using lithium-acetate as a novel catalyst without the addition of any proton source. Comparative catalytic efficiency of lithium-acetate and polyphosphoric acid to catalyze Biginelli condensation is also studied under neat conditions. The reaction is carried out in the absence of any solvent and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3·6H2O, NiCl2·6H2O and CoCl2·6H2O that were used with HCl as a cocatalyst. Compared to classical Biginelli reaction conditions, the present method has advantages of good yields, short reaction times, and experimental simplicity. The obtained products have been identified by spectral (1H NMR and IR) data and their melting points. The prepared compounds are evaluated for anticancer activity against two human cancer cell lines (lung cancer cell line A549 and breast cancer cell line MCF7).