Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 134876, 9 pages
http://dx.doi.org/10.1100/2012/134876
Research Article

Influence of the Flexible Liposomes on the Skin Deposition of a Hydrophilic Model Drug, Carboxyfluorescein: Dependency on Their Composition

1Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
2Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt

Received 22 October 2011; Accepted 8 December 2011

Academic Editor: Pao-Chu Wu

Copyright © 2012 Mohamed Badran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Cevc, A. Schätzlein, and H. Richardsen, “Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements,” Biochimica et Biophysica Acta, vol. 1564, no. 1, pp. 21–30, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Cevc and G. Blume, “Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage,” Biochimica et Biophysica Acta, vol. 1663, no. 1-2, pp. 61–73, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. D. Verma and A. Fahr, “Synergistic penetration enhancement effect of ethanol and phospholipids on the topical delivery of cyclosporin a,” Journal of Controlled Release, vol. 97, no. 1, pp. 55–66, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. K. Song and C. K. Kim, “Topical delivery of low-molecular-weight heparin with surface-charged flexible liposomes,” Biomaterials, vol. 27, no. 2, pp. 271–280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Chen, X. Liu, and A. Fahr, “Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: in vitro study with finite and infinite dosage application,” International Journal of Pharmaceutics, vol. 408, no. 1-2, pp. 223–234, 2011. View at Publisher · View at Google Scholar
  6. H. Schreier, “Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery,” Journal of Controlled Release, vol. 30, no. 1, pp. 1–15, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Schafer-Korting, H. C. Korting, and E. Ponce-Poschl, “Liposomal tretinoin for uncomplicated acne vulgaris,” Clinical Investigator, vol. 72, no. 12, pp. 1086–1091, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. H. C. Korting, H. Zienicke, M. Schafer-Korting, and O. Braun-Falco, “Liposome encapsulation improves efficacy of betamethasone dipropionate in atopic eczema but not in psoriasis vulgaris,” European Journal of Clinical Pharmacology, vol. 39, no. 4, pp. 349–351, 1990. View at Google Scholar · View at Scopus
  9. A. Gesztes and M. Mezei, “Topical anesthesia of the skin by liposome-encapsulated tetracaine,” Anesthesia and Analgesia, vol. 67, no. 11, pp. 1079–1081, 1988. View at Google Scholar · View at Scopus
  10. S. Zellmer, W. Pfeil, and J. Lasch, “Interaction of phosphatidylcholine liposomes with the human stratum corneum,” Biochimica et Biophysica Acta, vol. 1237, no. 2, pp. 176–182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kirjavainen, A. Urtti, I. Jääskeläinen et al., “Interaction of liposomes with human skin in vitro—the influence of lipid composition and structure,” Biochimica et Biophysica Acta - Lipids and Lipid Metabolism, vol. 1304, no. 3, pp. 179–189, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Cevc and G. Blume, “Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force,” Biochimica et Biophysica Acta, vol. 1104, no. 1, pp. 226–232, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Cevc, D. Gebauer, J. Stieber, A. Schätzlein, and G. Blume, “Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin,” Biochimica et Biophysica Acta, vol. 1368, no. 2, pp. 201–215, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. G. M. M. El Maghraby, A. C. Williams, and B. W. Barry, “Skin delivery of oestradiol from deformable and traditional liposomes: mechanistic studies,” Journal of Pharmacy and Pharmacology, vol. 51, no. 10, pp. 1123–1134, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. G. M. M. El Maghraby, A. C. Williams, and B. W. Barry, “Skin delivery of 5-fluorouracil from ultradeformable and standard liposomes in-vitro,” Journal of Pharmacy and Pharmacology, vol. 53, no. 8, pp. 1069–1077, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Cevc, “Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 13, no. 3-4, pp. 257–388, 1996. View at Google Scholar · View at Scopus
  17. G. M. M. El Maghraby, A. C. Williams, and B. W. Barry, “Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration,” International Journal of Pharmaceutics, vol. 196, no. 1, pp. 63–74, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Trotta, E. Peira, F. Debernardi, and M. Gallarate, “Elastic liposomes for skin delivery of dipotassium glycyrrhizinate,” International Journal of Pharmaceutics, vol. 241, no. 2, pp. 319–327, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Cevc and D. Gebauer, “Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier,” Biophysical Journal, vol. 84, no. 2, pp. 1010–1024, 2003. View at Google Scholar · View at Scopus
  20. P. L. Honeywell-Nguyen, S. Arenja, and J. A. Bouwstra, “Skin penetration and mechanisms of action in the delivery of the D2-agonist rotigotine from surfactant-based elastic vesicle formulations,” Pharmaceutical Research, vol. 20, no. 10, pp. 1619–1625, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. P. L. Honeywell-Nguyen and J. A. Bouwstra, “The in vitro transport of pergolide from surfactant-based elastic vesicles through human skin: a suggested mechanism of action,” Journal of Controlled Release, vol. 86, no. 1, pp. 145–156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. P. L. Honeywell-Nguyen and J. A. Bouwstra, “Vesicles as a tool for transdermal and dermal delivery,” Drug Discovery Today: Technologies, vol. 2, no. 1, pp. 67–74, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Dubey, D. Mishra, and N. K. Jain, “Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 67, no. 2, pp. 398–405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Touitou, B. Godin, and C. Weiss, “Enhanced delivery of drugs into and across the skin by ethosomal carriers,” Drug Development Research, vol. 50, no. 3-4, pp. 406–415, 2000. View at Google Scholar · View at Scopus
  25. D. D. Verma, Invasomes novel topical carriers for enhanced topical delivery: characterization and skin penetration properties, Ph.D. thesis, Marburg/Lahn, 2002.
  26. H. Okabe, Y. Obata, K. Takayama, and T. Nagai, “Percutaneous absorption enhancing effect and skin irritation of monocyclic monoterpenes,” Drug Design and Delivery, vol. 6, no. 3, pp. 229–238, 1990. View at Google Scholar · View at Scopus
  27. A. K. Jain, N. S. Thomas, and R. Panchagnula, “Transdermal drug delivery of imipramine hydrochloride. I. Effect of terpenes,” Journal of Controlled Release, vol. 79, no. 1–3, pp. 93–101, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Dragicevic-Curic, D. Scheglmann, V. Albrecht, and A. Fahr, “Development of different temoporfin-loaded invasomes-novel nanocarriers of temoporfin: characterization, stability and in vitro skin penetration studies,” Colloids and Surfaces B: Biointerfaces, vol. 70, no. 2, pp. 198–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. O. Potts and R. H. Guy, “Predicting skin permeability,” Pharmaceutical Research, vol. 9, no. 5, pp. 663–669, 1992. View at Publisher · View at Google Scholar · View at Scopus
  30. K. B. Ita, J. Du Preez, M. E. Lane, J. Hadgraft, and J. Du Plessis, “Dermal delivery of selected hydrophilic drugs from elastic liposomes: effect of phospholipid formulation and surfactants,” Journal of Pharmacy and Pharmacology, vol. 59, no. 9, pp. 1215–1222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. D. Verma, S. Verma, G. Blume, and A. Fahr, “Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: a skin penetration and confocal laser scanning microscopy study,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 55, no. 3, pp. 271–277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Guo, Q. Ping, G. Sun, and C. Jiao, “Lecithin vesicular carriers for transdermal delivery of cyclosporin A,” International Journal of Pharmaceutics, vol. 194, no. 2, pp. 201–207, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Hofer, H. Van Randenborgh, A. Lehmer, R. Hartung, and J. Breul, “Transcutaneous IL-2 uptake mediated by Transfersomes depends on concentration and fractionated application,” Cytokine, vol. 25, no. 4, pp. 141–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. R. C. MacDonald, R. I. MacDonald, B. P. M. Menco, K. Takeshita, N. K. Subbarao, and L. R. Hu, “Small-volume extrusion apparatus for preparation of large, unilamellar vesicles,” Biochimica et Biophysica Acta, vol. 1061, no. 2, pp. 297–303, 1991. View at Publisher · View at Google Scholar · View at Scopus
  35. D. D. Verma, S. Verma, K. J. McElwee, P. Freyschmidt-Paul, R. Hoffman, and A. Fahr, “Treatment of alopecia areata in the DEBR model using Cyclosporin A lipid vesicles,” European Journal of Dermatology, vol. 14, no. 5, pp. 332–338, 2004. View at Google Scholar · View at Scopus
  36. J. L. M. Heeremans, H. R. Gerritsen, S. P. Meusen et al., “The preparation of tissue-type plasminogen activator (t-PA) containing liposomes: entrapment efficiency and ultracentrifugation damage,” Journal of Drug Targeting, vol. 3, no. 4, pp. 301–310, 1995. View at Google Scholar · View at Scopus
  37. Y. P. Fang, Y. H. Tsai, P. C. Wu, and Y. B. Huang, “Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy,” International Journal of Pharmaceutics, vol. 356, no. 1-2, pp. 144–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Nasr, S. Mansour, N. D. Mortada, and A. A. Elshamy, “Vesicular aceclofenac systems: a comparative study between liposomes and niosomes,” Journal of Microencapsulation, vol. 25, no. 7, pp. 499–512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Du Plessis, C. Ramachandran, N. Weiner, and D. G. Müller, “The influence of particle size of liposomes on the deposition of drug into skin,” International Journal of Pharmaceutics, vol. 103, no. 3, pp. 277–282, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Hiruta, Y. Hattori, K. Kawano, Y. Obata, and Y. Maitani, “Novel ultra-deformable vesicles entrapped with bleomycin and enhanced to penetrate rat skin,” Journal of Controlled Release, vol. 113, no. 2, pp. 146–154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. B. A. I. Van Den Bergh, P. W. Wertz, H. E. Junginger, and J. A. Bouwstra, “Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements,” International Journal of Pharmaceutics, vol. 217, no. 1-2, pp. 13–24, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Dragicevic-Curic, D. Scheglmann, V. Albrecht, and A. Fahr, “Temoporfin-loaded invasomes: development, characterization and in vitro skin penetration studies,” Journal of Controlled Release, vol. 127, no. 1, pp. 59–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Mura, M. Manconi, C. Sinico, D. Valenti, and A. M. Fadda, “Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil,” International Journal of Pharmaceutics, vol. 380, no. 1-2, pp. 72–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. G. M. El Zaafarany, G. A. S. Awad, S. M. Holayel, and N. D. Mortada, “Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery,” International Journal of Pharmaceutics, vol. 397, no. 1-2, pp. 164–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. E. H. Lee, A. Kim, Y. K. Oh, and C. K. Kim, “Effect of edge activators on the formation and transfection efficiency of ultradeformable liposomes,” Biomaterials, vol. 26, no. 2, pp. 205–210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. M. M. Badran, J. Kuntsche, and A. Fahr, “Skin penetration enhancement by a microneedle device (Dermaroller) in vitro: dependency on needle size and applied formulation,” European Journal of Pharmaceutical Sciences, vol. 36, no. 4-5, pp. 511–523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. U. Subuddhi and A. K. Mishra, “Micellization of bile salts in aqueous medium: a fluorescence study,” Colloids and Surfaces B, vol. 57, no. 1, pp. 102–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. G. M. M. El Maghraby, A. C. Williams, and B. W. Barry, “Drug interaction and location in liposomes: correlation with polar surface areas,” International Journal of Pharmaceutics, vol. 292, no. 1-2, pp. 179–185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Kirby and G. Gergoriadis, “Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes,” Bio/Technology, vol. 2, no. 11, pp. 979–984, 1984. View at Google Scholar · View at Scopus
  50. M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, “Deformable liposomes and ethosomes as carriers for skin delivery of ketotifen,” Pharmazie, vol. 62, no. 2, pp. 133–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Williams, Transdermal and Topical Drug Delivery, Pharmaceutical Press, London, UK, 1st edition, 2003.
  52. B. Berner and P. Liu, “Alcohols as percutaneous penetration enhancers,” in Percutaneous Penetration Enhancers, E. W. Smith and H. I. Maibach, Eds., CRC Press, New York, NY, USA, 1995. View at Google Scholar
  53. H. R. Moghimi, A. C. Williams, and B. W. Barry, “A lamellar matrix model for stratum corneum intercellular lipids. V. Effects of terpene penetration enhancers on the structure and thermal behaviour of the matrix,” International Journal of Pharmaceutics, vol. 146, no. 1, pp. 41–54, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. K. S. Bhatia and J. Singh, “Effect of linolenic acid/ethanol or limonene/ethanol and iontophoresis on the in vitro percutaneous absorption of LHRH and ultrastructure of human epidermis,” International Journal of Pharmaceutics, vol. 180, no. 2, pp. 235–250, 1999. View at Publisher · View at Google Scholar · View at Scopus