Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 137805, 8 pages
http://dx.doi.org/10.1100/2012/137805
Research Article

Bactericidal Effects of 405 nm Light Exposure Demonstrated by Inactivation of Escherichia, Salmonella, Shigella, Listeria, and Mycobacterium Species in Liquid Suspensions and on Exposed Surfaces

The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde-Glasgow, Glasgow G1 1XW, UK

Received 30 October 2011; Accepted 8 December 2011

Academic Editor: Kent E. Kester

Copyright © 2012 Lynne E. Murdoch et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organisation (WHO), “Initiative for vaccine research: diarrhoeal diseases,” 2009, http://www.who.int/vaccine_research/diseases/diarrhoeal/en/index.html. View at Google Scholar
  2. N. E. Freitag, G. C. Port, and M. D. Miner, “Listeria monocytogenes—from saprophyte to intracellular pathogen,” Nature Reviews Microbiology, vol. 7, no. 9, pp. 623–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. O'Riordan, D. S. Sharlin, J. Gross et al., “Photoinactivation of mycobacteria in vitro and in a new murine model of localized Mycobacterium bovis BCG-induced granulomatous infection,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 5, pp. 1828–1834, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. G. Kim, A. E. Yousef, and S. Dave, “Application of ozone for enhancing the microbiological safety and quality of foods: a review,” Journal of Food Protection, vol. 62, no. 9, pp. 1071–1087, 1999. View at Google Scholar · View at Scopus
  5. A. D. Russell, “Bacterial resistance to disinfectants: present knowledge and future problems,” Journal of Hospital Infection, vol. 43, supplement 1, pp. S57–S68, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Springthorpe, “Disinfection of surfaces and equipment,” Journal of the Canadian Dental Association, vol. 66, no. 10, pp. 558–560, 2000. View at Google Scholar · View at Scopus
  7. F. Barbut, D. Menuet, M. Verachten, and E. Girou, “Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores,” Infection Control and Hospital Epidemiology, vol. 30, no. 6, pp. 507–514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Jarlier and H. Nikaido, “Mycobacterial cell wall: structure and role in natural resistance to antibiotics,” FEMS Microbiology Letters, vol. 123, no. 1-2, pp. 11–18, 1994. View at Google Scholar · View at Scopus
  9. L. J. Alderwick, H. L. Birch, A. K. Mishra, L. Eggeling, and G. S. Besra, “Structure, function and biosynthesis of the Mycobacterium tuberculosis cell wall: arabinogalactan and lipoarabinomannan assembly with a view to discovering new drug targets,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1325–1328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. N. J. Rowan, S. J. MacGregor, J. G. Anderson, R. A. Fouracre, L. McIlvaney, and O. Farish, “Pulsed-light inactivation of food-related microorganisms,” Applied and Environmental Microbiology, vol. 65, no. 3, pp. 1312–1315, 1999. View at Google Scholar · View at Scopus
  11. A. L. Andrady, S. H. Hamid, X. Hu, and A. Torikai, “Effects of increased solar ultraviolet radiation on materials,” Journal of Photochemistry and Photobiology B, vol. 46, no. 1–3, pp. 96–103, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. K. L. Bialka and A. Demirci, “Decontamination of Escherichia coli O157:H7 and Salmonella enterica on blueberries using ozone and pulsed UV-light,” Journal of Food Science, vol. 72, no. 9, pp. M391–M396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Hamblin and T. Hasan, “Photodynamic therapy: a new antimicrobial approach to infectious disease?” Photochemical and Photobiological Sciences, vol. 3, no. 5, pp. 436–450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Elman and J. Lebzelter, “Light therapy in the treatment of Acne vulgaris,” Dermatologic Surgery, vol. 30, no. 2, pp. 139–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. O. Feuerstein, I. Ginsburg, E. Dayan, D. Veler, and E. I. Weiss, “Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum,” Photochemistry and Photobiology, vol. 81, no. 5, pp. 1186–1189, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Maclean, S. J. MacGregor, J. G. Anderson, and G. A. Woolsey, “The role of oxygen in the visible-light inactivation of Staphylococcus aureus,” Journal of Photochemistry and Photobiology B, vol. 92, no. 3, pp. 180–184, 2008. View at Publisher · View at Google Scholar
  17. M. Maclean, An investigation into the light inactivation of medically important microorganisms, Ph.D. thesis, University of Strathclyde, Glasgow, UK, 2006.
  18. J. S. Guffey and J. Wilborn, “In vitro bactericidal effects of 405 nm and 470 nm blue light,” Photomedicine and Laser Surgery, vol. 24, no. 6, pp. 684–688, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. C. S. Enwemeka, D. Williams, S. Hollosi, D. Yens, and S. K. Enwemeka, “Visible 405 nm SLD light photo-destroys methicillin-resistant Staphylococcus aureus (MRSA) In vitro,” Lasers in Surgery and Medicine, vol. 40, no. 10, pp. 734–737, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Maclean, S. J. MacGregor, J. G. Anderson, and G. Woolsey, “High-intensity narrow-spectrum light inactivation and wavelength sensitivity of Staphylococcus aureus,” FEMS Microbiology Letters, vol. 285, no. 2, pp. 227–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Maclean, S. J. MacGregor, J. G. Anderson, and G. A. Woolsey, “Inactivation of bacterial pathogens following exposure to light from a 405 nm LED array,” Applied and Environmental Microbiology, vol. 75, no. 7, pp. 1932–1937, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. E. Murdoch, M. MacLean, S. J. MacGregor, and J. G. Anderson, “Inactivation of Campylobacter jejuni by exposure to high-intensity visible light,” Foodborne Pathogens and Disease, vol. 7, no. 10, pp. 1211–1216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Malik, H. Ladan, and Y. Nitzan, “Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions,” Journal of Photochemistry and Photobiology B, vol. 14, no. 3, pp. 262–266, 1992. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Jean, V. Briolat, and G. Reysset, “Oxidative stress response in Clostridium perfringens,” Microbiology, vol. 150, no. 6, pp. 1649–1659, 2004. View at Google Scholar · View at Scopus
  25. C. Murphy, C. Carroll, and K. N. Jordan, “Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni,” Journal of Applied Microbiology, vol. 100, no. 4, pp. 623–632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. A. Henry, B. Dyer, M. Wagner, M. Judy, and J. L. Matthews, “Phototoxicity of argon laser irradiation on biofilms of Porphyromonas and Prevotella species,” Journal of Photochemistry and Photobiology B, vol. 34, no. 2-3, pp. 123–128, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Ashkenazi, Z. Malik, Y. Harth, and Y. Nitzan, “Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light,” FEMS Immunology and Medical Microbiology, vol. 35, no. 1, pp. 17–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. R. Hamblin and T. Hasan, “Photodynamic therapy: a new antimicrobial approach to infectious disease?” Photochemical and Photobiological Sciences, vol. 3, no. 5, pp. 436–450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. N. S. Soukos, S. Som, A. D. Abernethy et al., “Phototargeting oral black-pigmented bacteria,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 4, pp. 1391–1396, 2005. View at Publisher · View at Google Scholar
  30. J. Chan, T. Fujiwara, P. Brennan et al., “Microbial glycolipids: possible virulence factors that scavenge oxygen radicals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 7, pp. 2453–2457, 1989. View at Google Scholar · View at Scopus
  31. Z. Bohrerova and K. G. Linden, “Assessment of DNA damage and repair in Mycobacterium terrae after exposure to UV irradiation,” Journal of Applied Microbiology, vol. 101, no. 5, pp. 995–1001, 2006. View at Publisher · View at Google Scholar · View at Scopus