Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 149361, 11 pages
http://dx.doi.org/10.1100/2012/149361
Research Article

Identification and Characterization of Differentially Expressed Transcripts in the Gills of Freshwater Prawn (Macrobrachium rosenbergii) under Salt Stress

1Fish Genetics and Biotechnology Division, Central Institute of Freshwater Aquaculture (Indian Council of Agricultural Research), Kausalyaganga, Bhubaneswar, Odisha 751002, India
2Department of Bioinformatics, Centre for Post Graduate Studies, Orissa University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India

Received 27 October 2011; Accepted 15 November 2011

Academic Editor: Frédéric Becq

Copyright © 2012 Hirak Kumar Barman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. John, “Physico-chemical studies of river Pumba and distribution of prawn, Macrobrachium rosenbergii,” Journal of Environmental Biology, vol. 30, no. 5, pp. 709–712, 2009. View at Google Scholar · View at Scopus
  2. M. B. New, “Farming freshwater prawns. a manula for the culture of the giant river prawn (Macrobrachium rosenbergii),” FAO Fisheries Technical Paper 428, 212, 2002. View at Google Scholar
  3. J. Shaterian, F. Georges, A. Hussain, D. Waterer, H. De Jong, and K. K. Tanino, “Root to shoot communication and abscisic acid in calreticulin (CR) gene expression and salt-stress tolerance in grafted diploid potato clones,” Environmental and Experimental Botany, vol. 53, no. 3, pp. 323–332, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Pandit, V. Rai, S. Bal et al., “Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.),” Molecular Genetics and Genomics, vol. 284, no. 2, pp. 121–136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. P. F. Larsen, E. E. Nielsen, A. Koed, D. S. Thomsen, P. A. Olsvik, and V. Loeschcke, “Interpopulation differences in expression of candidate genes for salinity tolerance in winter migrating anadromous brown trout (Salmo trutta L.),” BMC Genetics, vol. 9, article 12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. Xu and Y. Liu, “Gene expression profiles of the swimming crab Portunus trituberculatus exposed to salinity stress,” Marine Biology, vol. 158, no. 10, pp. 2161–2172, 2011. View at Publisher · View at Google Scholar
  7. X. J. Lu, J. Chen, Z. A. Huang, Y. H. Shi, and F. Wang, “Proteomic analysis on the alteration of protein expression in gills of ayu (Plecoglossus altivelis) associated with salinity change,” Comparative Biochemistry and Physiology D, vol. 5, no. 3, pp. 185–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. G. R. Scott and P. M. Schulte, “Intraspecific variation in gene expression after seawater transfer in gills of the euryhaline killifish Fundulus heteroclitus,” Comparative Biochemistry and Physiology A, vol. 141, no. 2, pp. 176–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. W. S. Marshall, “Na+, Cl-, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis,” Journal of Experimental Zoology, vol. 293, no. 3, pp. 264–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. N. M. Belli, R. O. Faleiros, K. C. S. Firmino et al., “Na,K-ATPase activity and epithelial interfaces in gills of the freshwater shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae),” Comparative Biochemistry and Physiology A, vol. 152, no. 3, pp. 431–439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Cottin, B. Shillito, T. Chertemps, A. Tanguy, N. Léger, and J. Ravaux, “Identification of differentially expressed genes in the hydrothermal vent shrimp Rimicaris exoculata exposed to heat stress,” Marine Genomics, vol. 3, no. 2, pp. 71–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Daldoul, S. Guillaumie, G. M. Reustle et al., “Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars,” Plant Science, vol. 179, no. 5, pp. 489–498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Wu, Q. Wang, Y. Ma, and C. Chu, “Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method,” Plant Science, vol. 168, no. 3, pp. 847–853, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. T. S. Hori, A. K. Gamperl, L. O. B. Afonso et al., “Heat-shock responsive genes identified and validated in Atlantic cod (Gadus morhua) liver, head kidney and skeletal muscle using genomic techniques,” BMC Genomics, vol. 11, no. 1, article 72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Kültz, D. Fiol, N. Valkova, S. Gomez-Jimenez, S. Y. Chan, and J. Lee, “Functional genomics and proteomics of the cellular osmotic stress response in “non-model” organisms,” Journal of Experimental Biology, vol. 210, no. 9, pp. 1593–1601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Mohapatra, H. K. Barman, R. P. Panda et al., “Cloning of cDNA and prediction of peptide structure of Plzf expressed in the spermatogonial cells of Labeo rohita,” Marine Genomics, vol. 3, no. 3-4, pp. 157–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. K. Barman, R. P. Panda, C. Mohapatra, A. Swain, and A. E. Eknath, “Identification of genes preferentially expressed in testis and spermatogonial cells of Labeo rohita by subtractive and suppressive hybridization,” Aquaculture Research, vol. 42, no. 8, pp. 1196–1205, 2011. View at Publisher · View at Google Scholar
  18. R. P. Panda, H. K. Barman, and C. Mohapatra, “Isolation of enriched carp spermatogonial stem cells from Labeo rohita testis for in vitro propagation,” Theriogenology, vol. 76, no. 2, pp. 241–251, 2011. View at Publisher · View at Google Scholar
  19. O. Zolk, C. Schenke, and A. Sarikas, “The ubiquitin-proteasome system: focus on the heart,” Cardiovascular Research, vol. 70, no. 3, pp. 410–421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. M. Barbosa, R. D. Locy, T. W. Barger, N. K. Singh, and J. H. Cherry, “GABA increases the rate of nitrate uptake and utilization in Arabidopsis roots,” Plant Biology, vol. 83, pp. 53–63, 2000. View at Google Scholar
  21. E. K. Lee, M. Kwon, J. H. Ko et al., “Multidrug resistance-related protein that functions in salt tolerance,” Plant Physiology, vol. 134, no. 1, pp. 528–538, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Schein, Y. Waché, R. Etges, L. C. Kucharski, A. van Wormhoudt, and R. S. M. Da Silva, “Effect of hyperosmotic shock on phosphoenolpyruvate carboxykinase gene expression and gluconeogenic activity in the crab muscle,” FEBS Letters, vol. 561, no. 1–3, pp. 202–206, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Schein, A. L. Fernandes Chittó, R. Etges, L. C. Kucharski, A. van Wormhoudt, and R. S.M. Da Silva, “Effect of hyper or hypo-osmotic conditions on neutral amino acid uptake and oxidation in tissues of the crab Chasmagnathus granulata,” Comparative Biochemistry and Physiology B, vol. 140, no. 4, pp. 561–567, 2005. View at Publisher · View at Google Scholar
  24. V. Visudtiphole, A. Watthanasurorot, S. Klinbunga, P. Menasveta, and K. Kirtikara, “Molecular characterization of Calreticulin: a biomarker for temperature stress responses of the giant tiger shrimp Penaeus monodon,” Aquaculture, vol. 308, no. 1, pp. S100–S108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Shechter, L. Glazer, S. Cheled et al., “A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 20, pp. 7129–7134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Ruiz, E. Sanchez, P. C. Garcia, L. R. Lopez-Lefebre, R. M. Rivero, and L. Romero, “Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock,” Phytochemistry, vol. 59, no. 5, pp. 473–478, 2002. View at Publisher · View at Google Scholar
  27. J. Yang, L. Wang, M. Huang et al., “An interleukin-2 enhancer binding factor 2 homolog involved in immune response from Chinese mitten crab Eriocheir sinensis,” Fish and Shellfish Immunology, vol. 30, no. 6, pp. 1303–1309, 2011. View at Publisher · View at Google Scholar
  28. H. Koiwa, F. Li, M. G. McCully et al., “The STT3a subunit isoform of the arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress,” Plant Cell, vol. 15, no. 10, pp. 2273–2284, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. A. V. Lobanov, D. L. Hatfield, and V. N. Gladyshev, “Selenoproteinless animals: selenophosphate synthetase SPS1 functions in a pathway unrelated to selenocysteine biosynthesis,” Protein Science, vol. 17, no. 1, pp. 176–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Lemaire, R. F. Moura, M. Granvik et al., “Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis,” PLoS ONE, vol. 6, no. 4, pp. 1–14, 2011. View at Publisher · View at Google Scholar
  31. H. Jakubowski, “Editing function of Escherichia coli cysteinyl-tRNA synthetase: cyclization of cysteine to cysteine thiolactone,” Nucleic Acids Research, vol. 22, no. 7, pp. 1155–1160, 1994. View at Google Scholar · View at Scopus
  32. J. Vandesompele, K. De Preter, F. Pattyn et al., “Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes,” Genome Biology, vol. 3, no. 7, article RESEARCH0034, 2002. View at Google Scholar · View at Scopus
  33. C. J. Niu, J. L. Rummer, C. J. Brauner, and P. M. Schulte, “Heat shock protein (Hsp70) induced by a mild heat shock slightly moderates plasma osmolarity increases upon salinity transfer in rainbow trout (Oncorhynchus mykiss),” Comparative Biochemistry and Physiology C, vol. 148, no. 4, pp. 437–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Kozak, “An analysis of vertebrate mRNA sequences: intimations of translational control,” Journal of Cell Biology, vol. 115, no. 4, pp. 887–903, 1991. View at Google Scholar · View at Scopus
  35. N. Saha, L. M. Jyrwa, M. Das, and K. Biswas, “Influence of increased environmental water salinity on gluconeogenesis in the air-breathing walking catfish, Clarias batrachus,” Fish Physiology and Biochemistry, vol. 37, no. 3, pp. 681–692, 2011. View at Publisher · View at Google Scholar
  36. W. Luana, F. Li, B. Wang, X. Zhang, Y. Liu, and J. Xiang, “Molecular characteristics and expression analysis of calreticulin in Chinese shrimp Fenneropenaeus chinensis,” Comparative Biochemistry and Physiology B, vol. 147, no. 3, pp. 482–491, 2007. View at Publisher · View at Google Scholar
  37. H. Shimizu, H. Taniguchi, Y. Hippo, Y. Hayashizaki, H. Aburatani, and T. Ishikawa, “Characterization of the mouse Abcc12 gene and its transcript encoding an ATP-binding cassette transporter, an orthologue of human ABCC12,” Gene, vol. 310, no. 1-2, pp. 17–28, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Wang, J. Dong, Y. Liu, and H. Gao, “A novel dehydration-responsive element-binding protein from Caragana korshinskii is involved in the response to multiple abiotic stresses and enhances stress tolerance in transgenic tobacco,” Plant Molecular Biology Reporter, vol. 28, no. 4, pp. 664–675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Bowen, C. Roberts, and A. E. Wheals, “Patterns of polymorphism and divergence in stress-related yeast proteins,” Yeast, vol. 22, no. 8, pp. 659–668, 2005. View at Publisher · View at Google Scholar · View at Scopus