Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 196791, 9 pages
http://dx.doi.org/10.1100/2012/196791
Research Article

The Effect of an Enamel Matrix Derivative (Emdogain) Combined with Bone Ceramic on Bone Formation in Mandibular Defects: A Histomorphometric and Immunohistochemical Study in the Canine

1Department of Periodontics, School of Dentistry and Torabinejad Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
2Department of Pathology, School of Dentistry and Torabinejad Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
3Diplomate of American Board of Periodontology, Private Practice in Periodontics, Silver Spring and Potomac, 11616 Toulone Dr., Potomac, Maryland, MD 20854, USA

Received 27 October 2011; Accepted 16 November 2011

Academic Editors: M. Borset and V. L. Sylvia

Copyright © 2012 Reza Birang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Newman, H. Takei, P. Klokkevold, and F. A. Carranza, Eds., Carranza’s Clinical Periodontology, Elsevier Saunders, St. Louis, Mo, USA, 10th edition, 2006.
  2. S. E. Lynch, R. Marx, M. Nevins, and L. A. Wisner-Lynch, Tissue Engineering: Applications in Oral and Maxillofacial Surgery and Periodontics, Quintessence, Chicago, Ill, USA, 2nd edition, 2008.
  3. J. Lindeh, N. P. Lang, and T. Karring, Clinical Periodontology and Implant Dentistry, Blackwell, Oxford, UK, 5th edition, 2008.
  4. S. Keila, C. E. Nemcovsky, O. Moses, Z. Artzi, and M. Weinreb, “In vitro effects of enamel matrix proteins on rat bone marrow cells and gingival fibroblasts,” Journal of Dental Research, vol. 83, no. 2, pp. 134–138, 2004. View at Google Scholar · View at Scopus
  5. Z. C. Song, R. Shu, A. M. Song, and X. L. Zhang, “Effect of EMPs on growth and attachment of human BMSCs,” Shanghai Kou Qiang Yi Xue, vol. 15, no. 6, pp. 601–604, 2006. View at Google Scholar
  6. L. Guida, M. Annunziata, F. Carinci, A. Di Feo, I. Passaro, and A. Oliva, “In vitro biologic response of human bone marrow stromal cells to enamel matrix derivative,” Journal of Periodontology, vol. 78, no. 11, pp. 2190–2196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Schwartz, D. L. Carnes, R. Pulliam et al., “Porcine fetal enamel matrix derivative stimulates proliferation but not differentiation of pre-osteoblastic 219 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells, and increases proliferation and differentiation of normal human osteoblast NHOst cells,” Journal of Periodontology, vol. 71, no. 8, pp. 1287–1296, 2000. View at Google Scholar · View at Scopus
  8. S. Yoneda, D. Itoh, S. Kuroda et al., “The effects of enamel matrix derivative (EMD) on osteoblastic cells in culture and bone regeneration in a rat skull defect,” Journal of Periodontal Research, vol. 38, no. 3, pp. 333–342, 2003. View at Google Scholar · View at Scopus
  9. F. Carinci, A. Piattelli, L. Guida et al., “Effects of Emdogain on osteoblast gene expression,” Oral Diseases, vol. 12, no. 3, pp. 329–342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Pischon, B. Zimmermann, J.-P. Bernimoulin, and S. Hägewald, “Effects of an enamel matrix derivative on human osteoblasts and PDL cells grown in organoid cultures,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 102, no. 4, pp. 551–557, 2006. View at Publisher · View at Google Scholar
  11. D. L. Johnson, D. Carnes, B. Steffensen, and D. L. Cochran, “Cellular effects of enamel matrix derivative are associated with different molecular weight fractions following separation by size-exclusion chomatography,” Journal of Periodontology, vol. 80, no. 4, pp. 648–656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Qu, M. Laky, C. Ulm et al., “Effect of Emdogain on proliferation and migration of different periodontal tissue-associated cells,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 109, no. 6, pp. 924–931, 2010. View at Publisher · View at Google Scholar
  13. M. Ohyama, N. Suzuki, Y. Yamaguchi, M. Maeno, K. Otsuka, and K. Ito, “Effect of enamel matrix derivative on the differentiation of C2C12 cells,” Journal of Periodontology, vol. 73, no. 5, pp. 543–550, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Takayama, N. Suzuki, M. Narukawa, T. Tokunaga, K. Otsuka, and K. Ito, “Enamel matrix derivative stimulates core binding factor α1/Runt-related transcription factor-2 expression via activation of Smad1 in C2C12 cells,” Journal of Periodontology, vol. 76, no. 2, pp. 244–249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Hattar, A. Asselin, D. Greenspan, M. Oboeuf, A. Berdal, and J. M. Sautier, “Potential of biomimetic surfaces to promote in vitro osteoblast-like cell differentiation,” Biomaterials, vol. 26, no. 8, pp. 839–848, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. van den Dolder, A. P. G. Vloon, and J. A. Jansen, “The effect of Emdogain® on the growth and differentiation of rat bone marrow cells,” Journal of Periodontal Research, vol. 41, no. 5, pp. 471–476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Esposito, M. G. Grusovin, N. Papanikolaou, P. Coulthard, and H. V. Worthington, “Enamel matrix derivative (Emdogain®) for periodontal tissue regeneration in intrabony defects,” Australian Dental Journal, vol. 55, no. 1, pp. 101–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Alhezaimi, T. Al-Shalan, R. O'Neill et al., “Connective tissue-cementum regeneration: a new histologic regeneration following the use of enamel matrix derivative in dehiscence-type defects. A dog model,” The International Journal of Periodontics & Restorative Dentistry, vol. 29, no. 4, pp. 425–433, 2009. View at Google Scholar
  19. V. Iorio Siciliano, G. Andreuccetti, A. Iorio Siciliano, A. Blasi, A. Sculean, and G. E. Salvi, “Clinical outcomes after treatment of non-contained intrabony defects with enamel matrix derivative or guided tissue regeneration: a 12-month randomized controlled clinical trial,” Journal of Periodontology, vol. 82, no. 1, pp. 62–71, 2011. View at Publisher · View at Google Scholar
  20. F. Kawana, Y. Sawae, T. Sahara et al., “Porcine enamel matrix derivative enhances trabecular bone regeneration during wound healing of injured rat femur,” Anatomical Record, vol. 264, no. 4, pp. 438–446, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Z. Casati, E. A. Sallum, F. H. Nociti, R. G. Caffesse, and A. Wilson Sallum, “Enamel matrix derivative and bone healing after guided bone regeneration in Dehiscence-type defects around implants. A histomorphometric study in dogs,” Journal of Periodontology, vol. 73, no. 7, pp. 789–796, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Schwarz, D. Rothamel, M. Herten, A. Sculean, W. Scherbaum, and J. Becker, “Effect of enamel matrix protein derivative on the attachment, proliferation, and viability of human SaOs(2) osteoblasts on titanium implants,” Clinical oral Investigations, vol. 8, no. 3, pp. 165–171, 2004. View at Google Scholar · View at Scopus
  23. N. Donos, N. P. Lang, I. K. Karoussis, D. Bosshardt, M. Tonetti, and L. Kostopoulos, “Effect of GBR in combination with deproteinized bovine bone mineral and/ or enamel matrix proteins on the healing of critical-size defects,” Clinical Oral Implants Research, vol. 15, no. 1, pp. 101–111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Murai, S. Sato, R. Koshi et al., “Effects of the enamel matrix derivative and beta-tricalcium phosphate on bone augmentation within a titanium cap in rabbit calvarium,” Journal of Oral Science, vol. 47, no. 4, pp. 209–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. B. D. Boyan, T. C. Weesner, C. H. Lohmann et al., “Porcine fetal enamel matrix derivative enhances bone formation induced by demineralized freeze dried bone allograft in vivo,” Journal of Periodontology, vol. 71, no. 8, pp. 1278–1286, 2000. View at Google Scholar · View at Scopus
  26. N. Donos, L. Kostopoulos, M. Tonetti, T. Karring, and N. P. Lang, “The effect of enamel matrix proteins and deproteinized bovine bone mineral on heterotopic bone formation,” Clinical Oral Implants Research, vol. 17, no. 4, pp. 434–438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. S. Plachokova, J. van den Dolder, and J. A. Jansen, “The bone-regenerative properties of Emdogain adsorbed onto poly(d,l-lactic-coglycolic acid)/calcium phosphate composites in an ectopic and an orthotopic rat model,” Journal of Periodontal Research, vol. 43, no. 1, pp. 55–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Sculean, F. Schwarz, J. Becker, and M. Brecx, “The application of an enamel matrix protein derivative (Emdogain®) in regenerative periodontal therapy: a review,” Medical Principles and Practice, vol. 16, no. 3, pp. 167–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Trombelli and R. Farina, “Clinical outcomes with bioactive agents alone or in combination with grafting or guided tissue regeneration,” Journal of Clinical Periodontology, vol. 35, no. 8, pp. 117–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Reichert, B. Al-Nawas, R. Smeets, A. Kasaj, W. Götz, and M. O. Klein, “In vitro proliferation of human osteogenic cells in presence of different commercial bone substitute materials combined with enamel matrix derivatives,” Head and Face Medicine, vol. 5, no. 1, article 23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Potijanyakul, W. Sattayasansakul, S. Pongpanich, N. Leepong, and S. Kintarak, “Effects of enamel matrix derivative on bioactive glass in rat calvarium defects,” The Journal of Oral Implantology, vol. 36, no. 3, pp. 195–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. K. Tu, A. Woolston, and C. M. Faggion, “Do bone grafts or barrier membranes provide additional treatment effects for infrabony lesions treated with enamel matrix derivatives? A network meta-analysis of randomized-controlled trials,” Journal of Clinical Periodontology, vol. 37, no. 1, pp. 59–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Schneider, F. E. Weber, C. H. F. Hämmerle, A. Feloutzis, and R. E. Jung, “Bone regeneration using a synthetic matrix containing enamel matrix derivate,” Clinical Oral Implants Research, vol. 22, no. 2, pp. 214–222, 2011. View at Publisher · View at Google Scholar
  34. F. Döri, N. Arweiler, I. Gera, and A. Sculean, “Clinical evaluation of an enamel matrix protein derivative combined with either a natural bone mineral or β-tricalcium phosphate,” Journal of Periodontology, vol. 76, no. 12, pp. 2236–2243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Wongwitwichot, J. Kaewsrichan, K. H. Chua, and B. I. Ruszymah, “Comparison of TCP and TCP/HA hybrid scaffolds for osteoconductive activity,” The Open Biomedical Engineering Journal, vol. 4, pp. 279–285, 2010. View at Google Scholar
  36. C. Schopper, F. Ziya-Ghazvini, W. Goriwoda et al., “HA/TCP compounding of a porous CaP biomaterial improves bone formation and scaffold degradation—a long-term histological study,” Journal of Biomedical Materials Research—Part B, vol. 74, no. 1, pp. 458–467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. T. L. Arinzeh, T. Tran, J. Mcalary, and G. Daculsi, “A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation,” Biomaterials, vol. 26, no. 17, pp. 3631–3638, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. K. B. Fleckenstein, M. F. Cuenin, M. E. Peacock et al., “Effect of a hydroxyapatite tricalcium phosphate alloplast on osseous repair in the rat calvarium,” Journal of Periodontology, vol. 77, no. 1, pp. 39–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. S. J. Froum, S. S. Wallace, S. O. Cho, N. Elian, and D. P. Tarnow, “Histomorphometric comparison of a biphasic bone ceramic to anorganic bovine bone for sinus augmentation: 6- to 8-month postsurgical assessment of vital bone formation. A pilot study,” International Journal of Periodontics and Restorative Dentistry, vol. 28, no. 3, pp. 273–281, 2008. View at Google Scholar · View at Scopus
  40. S. J. Brookes, C. Robinson, J. Kirkham, and W. A. Bonass, “Biochemistry and molecular biology of amelogenin proteins of developing dental enamel,” Archives of Oral Biology, vol. 40, no. 1, pp. 1–14, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Kawase, K. Okuda, M. Momose, Y. Kato, H. Yoshie, and D. M. Burns, “Enamel matrix derivative (EMDOGAIN®) rapidly stimulates phosphorylation of the MAP kinase family and nuclear accumulation of smad2 in both oral epithelial and fibroblastic human cells,” Journal of Periodontal Research, vol. 36, no. 6, pp. 367–376, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Iwata, Y. Morotome, T. Tanabe, M. Fukae, I. Ishikawa, and S. Oida, “Noggin blocks osteoinductive activity of porcine enamel extracts,” Journal of Dental Research, vol. 81, no. 6, pp. 387–391, 2002. View at Google Scholar · View at Scopus
  43. A. G. Fincham, J. Moradian-Oldak, J. P. Simmer et al., “Self-assembly of a recombinant amelogenin protein generates supramolecular structures,” Journal of Structural Biology, vol. 112, no. 2, pp. 103–109, 1994. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Gestrelius, C. Andersson, D. Lidstrom, L. Hammarstrom, and M. Somerman, “In vitro studies on periodontal ligament cells and enamel matrix derivative,” Journal of Clinical Periodontology, vol. 24, no. 9, part 2, pp. 685–692, 1997. View at Google Scholar
  45. S. P. Lyngstadaas, J. C. Wohlfahrt, S. J. Brookes, M. L. Paine, M. L. Snead, and J. E. Reseland, “Enamel matrix proteins; old molecules for new applications,” Orthodontics and Craniofacial Research, vol. 12, no. 3, pp. 243–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Galli, G. M. Macaluso, S. Guizzardi, R. Vescovini, M. Passeri, and G. Passeri, “Osteoprotegerin and receptor activator of nuclear factor-kappa B ligand modulation by enamel matrix derivative in human alveolar osteoblasts,” Journal of Periodontology, vol. 77, no. 7, pp. 1223–1228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Goda, H. Inoue, Y. Kaneshita et al., “Emdogain stimulates matrix degradation by osteoblasts,” Journal of Dental Research, vol. 87, no. 8, pp. 782–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Ikeo, “Erratum: emdogain stimulates matrix degradation by osteoblasts,” Journal of Dental Research, vol. 87, no. 10, p. 984, 2008. View at Publisher · View at Google Scholar
  49. L. L. Hench and J. M. Polak, “Third-generation biomedical materials,” Science, vol. 295, no. 5557, pp. 1014–1017, 2002. View at Google Scholar · View at Scopus
  50. S. S. Jensen, A. Yeo, M. Dard, E. Hunziker, R. Schenk, and D. Buser, “Evaluation of a novel biphasic calcium phosphate in standardized bone defects. A histologic and histomorphometric study in the mandibles of minipigs,” Clinical Oral Implants Research, vol. 18, no. 6, pp. 752–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Yamamoto, H. Masuda, Y. Shibukawa, and S. Yamada, “Combination of bovine-derived xenografts and enamel matrix derivative in the treatment of intrabony periodontal defects in dogs,” International Journal of Periodontics and Restorative Dentistry, vol. 27, no. 5, pp. 471–479, 2007. View at Google Scholar · View at Scopus
  52. G. Zucchelli, C. Amore, L. Montebugnoli, and M. De Sanctis, “Enamel matrix proteins and bovine porous bone mineral in the treatment of intrabony defects: a comparative controlled clinical trial,” Journal of Periodontology, vol. 74, no. 12, pp. 1725–1735, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Sculean, P. Windisch, T. Keglevich, and I. Gera, “Clinical and histologic evaluation of an enamel matrix protein derivative combined with a bioactive glass for the treatment of intrabony periodontal defects in humans,” International Journal of Periodontics and Restorative Dentistry, vol. 25, no. 2, pp. 139–147, 2005. View at Google Scholar · View at Scopus
  54. N. Donos, D. Bosshardt, N. Lang et al., “Bone formation by enamel matrix proteins and xenografts: an experimental study in the rat ramus,” Clinical Oral Implants Research, vol. 16, no. 2, pp. 140–146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Veis, K. Tompkins, K. Alvares et al., “Specific amelogenin gene splice products have signaling effects on cells in culture and in implants in vivo,” The Journal of Biological Chemistry, vol. 275, no. 52, pp. 41263–41272, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Gursing, Y. Acar, and S. Alagoz, “Osteopontin: a multifunctional molecule,” International Journal of Medical Sciences, vol. 1, no. 3, pp. 55–60, 2010. View at Google Scholar
  57. J. Sodek, B. Ganss, and M. D. McKee, “Osteopontin,” Critical Reviews in Oral Biology and Medicine, vol. 11, no. 3, pp. 279–303, 2000. View at Google Scholar · View at Scopus
  58. T. Standal, M. Borset, and A. Sundan, “Role of osteopontin in adhesion, migration, cell survival and bone remodeling,” Experimental Oncology, vol. 26, no. 3, pp. 179–184, 2004. View at Google Scholar · View at Scopus
  59. G. J. Pinero, M. C. Farach-Carson, R. E. Devoll, J. E. Aubin, J. C. Brunn, and W. T. Butler, “Bone matrix proteins in osteogenesis and remodelling in the neonatal rat mandible as studied by immunolocalization of osteopontin, bone sialoprotein, alpha2 HS-glycoprotein and alkaline phosphatase,” Archives of Oral Biology, vol. 40, no. 2, pp. 145–155, 1995. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Weishaupt, J.-P. Bernimoulin, P. Trackman, and S. Hägewald, “Stimulation of osteoblasts with Emdogain increases the expression of specific mineralization markers,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 106, no. 2, pp. 304–308, 2008. View at Publisher · View at Google Scholar
  61. M. D. McKee and A. Nanci, “Osteopontin and the bone remodeling sequence. Colloidal-gold immunocytochemistry of an interfacial extracellular matrix protein,” Annals of the New York Academy of Sciences, vol. 760, pp. 177–189, 1995. View at Publisher · View at Google Scholar · View at Scopus