Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 263737, 8 pages
http://dx.doi.org/10.1100/2012/263737
Research Article

The Use of Recombinant Pseudotype Virus-Like Particles Harbouring Inserted Target Antigen to Generate Antibodies against Cellular Marker p16INK4A

1Institute of Biotechnology, Vilnius University, Graiciuno 8, 02241 Vilnius, Lithuania
2Institute of Experimental Morphology, Pathology and Anthropology with Muzeum, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Building 25, 1113 Sofia, Bulgaria

Received 29 October 2011; Accepted 20 November 2011

Academic Editor: Angelo A. Manfredi

Copyright © 2012 Rita Lasickienė et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. van Herck, P. van Damme, S. Thoelen, and A. Meheus, “Long-term persistence of anti-HBs after vaccination with a recombinant DNA yeast-derived hepatitis B vaccine: 8-year results,” Vaccine, vol. 16, no. 20, pp. 1933–1935, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. M. R. Hilleman, “Yeast recombinant hepatitis B vaccine,” Infection, vol. 15, no. 1, pp. 3–7, 1987. View at Google Scholar · View at Scopus
  3. K. E. Palmer, A. B. Jenson, J. C. Kouokam, A. B. Lasnik, and S. J. Ghim, “Recombinant vaccines for the prevention of human papillomavirus infection and cervical cancer,” Experimental and Molecular Pathology, vol. 86, no. 3, pp. 224–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Pumpens and E. Grens, “Artificial genes for chimeric virus-like particles,” in Artificial DNA: Methods and Applications, pp. 249–327, CRC Press, LLC, 2002. View at Google Scholar
  5. R. Ulrich, M. Nassal, H. Meisel, and D. H. Krüger, “Core particles of hepatitis B virus as carrier for foreign epitopes,” Advances in Virus Research, vol. 50, pp. 141–182, 1998. View at Google Scholar · View at Scopus
  6. D. Koletzki, S. S. Biel, H. Meisel et al., “HBV core particles allow the insertion and surface exposure of the entire potentially protective region of puumala hantavirus nucleocapsid protein,” The Journal of Biological Chemistry, vol. 380, no. 3, pp. 325–333, 1999. View at Google Scholar · View at Scopus
  7. K. Tegerstedt, J. A. Lindencrona, C. Curcio et al., “A single vaccination with polyomavirus VP1/VP2Her2 virus-like particles prevents outgrowth of HER-2/neu-expressing tumors,” Cancer Research, vol. 65, no. 13, pp. 5953–5957, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Gedvilaite, A. Zvirbliene, J. Staniulis, K. Sasnauskas, D. H. Krüger, and R. Ulrich, “Segments of puumala hantavirus nucleocapsid protein inserted into chimeric polyomavirus-derived virus-like particles induce a strong immune response in mice,” Viral Immunology, vol. 17, no. 1, pp. 51–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Zvirbliene, L. Samonskyte, A. Gedvilaite, T. Voronkova, R. Ulrich, and K. Sasnauskas, “Generation of monoclonal antibodies of desired specificity using chimeric polyomavirus-derived virus-like particles,” Journal of Immunological Methods, vol. 311, no. 1-2, pp. 57–70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Sambrook and D. W. Russell, Molecular Cloning, A Laboratory Manual, Cold Spring Harbour, Cold Spring Harbor Press, 2001.
  11. R. Slibinskas, D. Samuel, A. Gedvilaite, J. Staniulis, and K. Sasnauskas, “Synthesis of the measles virus nucleoprotein in yeast Pichia pastoris and Saccharomyces cerevisiae,” Journal of Biotechnology, vol. 107, no. 2, pp. 115–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Kohler and C. Milstein, “Continuous cultures of fused cells secreting antibody of predefined specificity,” Nature, vol. 256, no. 5517, pp. 495–497, 1975. View at Google Scholar · View at Scopus
  13. A. Zvirbliene, I. Sezaite, M. Pleckaityte, I. Kucinskaite-Kodze, M. Juozapaitis, and K. Sasnauskas, “Mapping of an antigenic site on the nucleocapsid protein of human parainfluenza virus type 3,” Viral Immunology, vol. 22, no. 3, pp. 181–188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. T. Keating, A. Cviko, S. Riethdorf et al., “Ki-67, cyclin E, and p16INK4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia,” The American Journal of Surgical Pathology, vol. 25, no. 7, pp. 884–891, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Murphy, M. Ring, A. G. Killalea et al., “p16INK4A as a marker for cervical dyskaryosis: CIN and cGIN in cervical biopsies and ThinPrep smears,” Journal of Clinical Pathology, vol. 56, no. 1, pp. 56–63, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. G. Dijkstra, D. A. M. Heideman, S. C. De Roy et al., “p16INK4a immunostaining as an alternative to histology review for reliable grading of cervical intraepithelial lesions,” Journal of Clinical Pathology, vol. 63, no. 11, pp. 972–977, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Sasnauskas, O. Buzaite, F. Vogel et al., “Yeast cells allow high-level expression and formation of polyomavirus-like particles,” Biological Chemistry, vol. 380, no. 3, pp. 381–386, 1999. View at Google Scholar · View at Scopus
  18. R. C. Liddington, Y. Yan, J. Moulai, R. Sahli, T. L. Benjamin, and S. C. Harrison, “Structure of simian virus 40 at 3.8 Å resolution,” Nature, vol. 354, no. 6351, pp. 278–284, 1991. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Stehle, Y. Yan, T. L. Benjamin, and S. C. Harrison, “Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment,” Nature, vol. 369, no. 6476, pp. 160–163, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. J. P. Griffith, D. L. Griffith, I. Rayment, W. T. Murakami, and D. L. Caspar, “Inside polyomavirus at 25-Å resolution,” Nature, vol. 355, no. 6361, pp. 652–654, 1992. View at Publisher · View at Google Scholar · View at Scopus