Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 269531, 6 pages
http://dx.doi.org/10.1100/2012/269531
Review Article

Muscle Wasting and Resistance of Muscle Anabolism: The “Anabolic Threshold Concept” for Adapted Nutritional Strategies during Sarcopenia

1Clermont Université and Unité de Nutrition Humaine, Université d'Auvergne, BP 10448, 63000 Clermont-Ferrand, France
2INRA, UMR 1019, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
3UNH Centre de Clermont-Ferrand-Theix, INRA, 63122 Saint Genès, France

Received 5 November 2012; Accepted 3 December 2012

Academic Editors: L. Guimarães-Ferreira, H. Nicastro, J. Wilson, and N. E. Zanchi

Copyright © 2012 Dominique Dardevet et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Obled, I. Papet, and D. Breuillé, “Metabolic bases of amino acid requirements in acute diseases,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 5, pp. 189–197, 2002. View at Google Scholar
  2. M. J. Rennie, R. H. T. Edwards, and D. Halliday, “Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting,” Clinical Science, vol. 63, no. 6, pp. 519–523, 1982. View at Google Scholar · View at Scopus
  3. P. J. Pacy, G. M. Price, D. Halliday, M. R. Quevedo, and D. J. Millward, “Nitrogen homoeostasis in man: the diurnal responses of protein synthesis and degradation and amino acid oxidation to diets with increasing protein intakes,” Clinical Science, vol. 86, no. 1, pp. 103–118, 1994. View at Google Scholar · View at Scopus
  4. Y. Boirie, P. Gachon, S. Corny, J. Fauquant, J. L. Maubois, and B. Beaufrère, “Acute postprandial changes in leucine metabolism as assessed with an intrinsically labeled milk protein,” American Journal of Physiology, vol. 271, no. 6, pp. E1083–E1091, 1996. View at Google Scholar · View at Scopus
  5. E. Volpi, P. Lucidi, G. Cruciani et al., “Contribution of amino acids and insulin to protein anabolism during meal absorption,” Diabetes, vol. 45, no. 9, pp. 1245–1252, 1996. View at Google Scholar · View at Scopus
  6. M. Prod'homme, I. Rieu, M. Balage, D. Dardevet, and J. Grizard, “Insulin and amino acids both strongly participate to the regulation of protein metabolism,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 7, no. 1, pp. 71–77, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Balage, J. Averous, D. Rémond et al., “Presence of low-grade inflammation impaired postprandial stimulation of muscle protein synthesis in old rats,” Journal of Nutritional Biochemistry, vol. 21, no. 4, pp. 325–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Rieu, C. Sornet, J. Grizard, and D. Dardevet, “Glucocorticoid excess induces a prolonged leucine resistance on muscle protein synthesis in old rats,” Experimental Gerontology, vol. 39, no. 9, pp. 1315–1321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Rieu, H. Magne, I. Savary-Auzeloux et al., “Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats,” Journal of Physiology, vol. 587, no. 22, pp. 5483–5492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. H. Lang and R. A. Frost, “Glucocorticoids and TNFα interact cooperatively to mediate sepsis-induced leucine resistance in skeletal muscle,” Molecular Medicine, vol. 12, no. 11-12, pp. 291–299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Marzani, M. Balage, A. Vénien et al., “Antioxidant supplementation restores defective leucine stimulation of protein synthesis in skeletal muscle from old rats,” Journal of Nutrition, vol. 138, no. 11, pp. 2205–2211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Dardevet, C. Sornet, G. Bayle, J. Prugnaud, C. Pouyet, and J. Grizard, “Postprandial stimulation of muscle protein synthesis in old rats can be restored by a leucine-supplemented meal,” Journal of Nutrition, vol. 132, no. 1, pp. 95–100, 2002. View at Google Scholar · View at Scopus
  13. C. S. Katsanos, H. Kobayashi, M. Sheffield-Moore, A. Aarsland, and R. R. Wolfe, “A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly,” American Journal of Physiology, vol. 291, no. 2, pp. E381–E387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Combaret, D. Dardevet, I. Rieu et al., “A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle,” Journal of Physiology, vol. 569, no. 2, pp. 489–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Dardevet, C. Sornet, M. Balage, and J. Grizard, “Stimulation of in vitro rat muscle protein synthesis by leucine decreases with age,” Journal of Nutrition, vol. 130, no. 11, pp. 2630–2635, 2000. View at Google Scholar · View at Scopus
  16. M. Balage and D. Dardevet, “Long-term effects of leucine supplementation on body composition,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 3, pp. 265–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Pansarasa, V. Flati, G. Corsetti, L. Brocca, E. Pasini, and G. D'Antona, “Oral amino acid supplementation counteracts age-induced sarcopenia in elderly rats,” American Journal of Cardiology, vol. 101, no. 11, pp. S35–S41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Verhoeven, K. Vanschoonbeek, L. B. Verdijk et al., “Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men,” American Journal of Clinical Nutrition, vol. 89, no. 5, pp. 1468–1475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Zéanandin, M. Balage, S. M. . Schneider, J. Dupont, and I. Mothe-Satney, “Long-term leucine-enriched diet increases adipose tissue mass without affecting skeletal muscle mass and overall insulin sensitivity in old rats,” Age, vol. 34, no. 2, pp. 371–387, 2012. View at Google Scholar
  20. M. Dangin, Y. Boirie, C. Guillet, and B. Beaufrère, “Influence of the protein digestion rate on protein turnover in young and elderly subjects,” Journal of Nutrition, vol. 132, no. 10, pp. 3228S–3233S, 2002. View at Google Scholar · View at Scopus
  21. I. Rieu, M. Balage, C. Sornet et al., “Increased availability of leucine with leucine-rich whey proteins improves postprandial muscle protein synthesis in aging rats,” Nutrition, vol. 23, no. 4, pp. 323–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Magne, I. Savary-Auzeloux, C. Migné et al., “Contrarily to whey and high protein diets, dietary free leucine supplementation cannot reverse the lack of recovery of muscle mass after prolonged immobilization during ageing,” Journal of Physiology, vol. 590, pp. 2035–2049, 2012. View at Google Scholar
  23. Y. Boirie, M. Dangin, P. Gachon, M. P. Vasson, J. L. Maubois, and B. Beaufrère, “Slow and fast dietary proteins differently modulate postprandial protein accretion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14930–14935, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Arnal, L. Mosoni, Y. Boirie et al., “Protein pulse feeding improves protein retention in elderly women,” American Journal of Clinical Nutrition, vol. 69, no. 6, pp. 1202–1208, 1999. View at Google Scholar · View at Scopus
  25. M. A. Arnal, L. Mosoni, Y. Boirie et al., “Protein turnover modifications induced by the protein feeding pattern still persist after the end of the diets,” American Journal of Physiology, vol. 278, no. 5, pp. E902–E909, 2000. View at Google Scholar · View at Scopus
  26. M. A. Arnal, L. Mosoni, D. Dardevet et al., “Pulse protein feeding pattern restores stimulation of muscle protein synthesis during the feeding period in old rats,” Journal of Nutrition, vol. 132, no. 5, pp. 1002–1008, 2002. View at Google Scholar · View at Scopus
  27. R. Scognamiglio, A. Avogaro, C. Negut, R. Piccolotto, S. Vigili de Kreutzenberg, and A. Tiengo, “The effects of oral amino acid intake on ambulatory capacity in elderly subjects,” Aging, vol. 16, no. 6, pp. 443–447, 2004. View at Google Scholar · View at Scopus
  28. R. Scognamiglio, R. Piccolotto, C. Negut, A. Tiengo, and A. Avogaro, “Oral amino acids in elderly subjects: effect on myocardial function and walking capacity,” Gerontology, vol. 51, no. 5, pp. 302–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Scognamiglio, A. Testa, R. Aquilani, F. S. Dioguardi, and E. Pasini, “Impairment in walking capacity and myocardial function in the elderly: is there a role for nonpharmacologic therapy with nutritional amino acid supplements?” American Journal of Cardiology, vol. 101, no. 11, pp. S78–S81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. B. Solerte, C. Gazzaruso, R. Bonacasa et al., “Nutritional supplements with oral amino acid mixtures increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia,” American Journal of Cardiology, vol. 101, no. 11, pp. S69–S77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. T. B. Harris, L. Ferrucci, R. P. Tracy et al., “Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly,” American Journal of Medicine, vol. 106, no. 5, pp. 506–512, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Bautmans, R. Njemini, M. Lambert, C. Demanet, and T. Mets, “Circulating acute phase mediators and skeletal muscle performance in hospitalized geriatric patients,” Journals of Gerontology Series A, vol. 60, no. 3, pp. 361–367, 2005. View at Google Scholar · View at Scopus
  33. L. A. Schaap, S. M. F. Pluijm, D. J. H. Deeg, and M. Visser, “Inflammatory markers and loss of muscle mass (Sarcopenia) and strength,” American Journal of Medicine, vol. 119, no. 6, pp. 526.e9–526.e17, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Visser, M. Pahor, D. R. Taaffe et al., “Relationship of interleukin-6 and tumor necrosis factor-α with muscle mass and muscle strength in elderly men and women: the health ABC study,” Journals of Gerontology Series A, vol. 57, no. 5, pp. M326–M332, 2002. View at Google Scholar · View at Scopus
  35. L. Mosoni, M. Balage, E. Vazeille et al., “Antioxidant supplementation had positive effects in old rat muscle, but through better oxidative status in other organs,” Nutrition, vol. 26, no. 11-12, pp. 1157–1162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. G. I. Smith, P. Atherton, D. N. Reeds et al., “Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial,” American Journal of Clinical Nutrition, vol. 93, no. 2, pp. 402–412, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. N. A. Burd, B. Y. Wall, and L. J. C. Van Loon, “The curious case of anabolic resistance: old wives' tales or new fables?” Journal of Applied Physiology, vol. 112, pp. 1233–1235, 2012. View at Google Scholar