Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 348246, 5 pages
http://dx.doi.org/10.1100/2012/348246
Research Article

Decreased Erythrocyte NA+,K+-ATPase Activity and Increased Plasma TBARS in Prehypertensive Patients

1Department of Physical Education, Midwest State University, Campus Irati, 84500-000 PR, Irati, Brazil
2Departamento de Educação Física e Saúde, Universidade de Santa Cruz do Sul, 96815-900 Santa Cruz do Sul, RS, Brazil
3Departamento de Biologia e Farmácia Laboratório de Biotecnologia e Genética, 164, 96815-900 Santa Cruz do Sul, RS, Brazil
4Pharmaceutical Science Master Degree Program, Midwest State University, Campus CEDETEG, 85040-080 Guarapuava, PR, Brazil
5Faculdade Campo Real, Biomedicina, 85015-240 Guarapuava, PR, Brazil
6Departamento de Educação Física, Universidade Federal do Paraná, 80215370 Curitiba, PR, Brazil

Received 19 March 2012; Accepted 17 May 2012

Academic Editors: M. Y. Arica, A. Capell, and P. Madsen

Copyright © 2012 Carlos Ricardo Maneck Malfatti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Waeber and H. R. Brunner, “The multifactorial nature of hypertension: the greatest challenge for its treatment?” Journal of Hypertension, vol. 19, no. 3, pp. S9–S16, 2001. View at Google Scholar · View at Scopus
  2. T. Iwamoto, S. Kita, and T. Katsuragi, “Salt-sensitive hypertension, Na+/Ca2+ exchanger, and vascular smooth muscle,” Trends in Cardiovascular Medicine, vol. 15, no. 8, pp. 273–277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Ferrari, M. Ferrandi, L. Torielli et al., “Antihypertensive compounds that modulate the Na-K pump,” Annals of the New York Academy of Sciences, vol. 986, pp. 694–701, 2003. View at Google Scholar · View at Scopus
  4. O. V. Fedorova, A. S. Simbirtsev, N. I. Kolodkin et al., “Monoclonal antibody to an endogenous bufadienolide, marinobufagenin, reverses preeclampsia-induced Na/K-ATPase inhibition and lowers blood pressure in NaCl-sensitive hypertension,” Journal of Hypertension, vol. 26, no. 12, pp. 2414–2425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Kisters, E. R. Krefting, M. Hausberg, K. D. Kohnert, A. Honig, and D. Bettin, “Importance of decreased intracellular phosphate and magnesium concentrations and reduced ATPase activities in spontaneously hypertensive rats,” Magnesium Research, vol. 13, no. 3, pp. 183–188, 2000. View at Google Scholar · View at Scopus
  6. K. Tsuda, I. Nishio, and Y. Masuyama, “The role of sodium-potassium adenosine triphosphatase in the regulation of membrane fluidity of erythrocytes in spontaneously hypertensive rats: an electron paramagnetic resonance investigation,” American Journal of Hypertension, vol. 10, no. 12 I, pp. 1411–1414, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Khalil-Manesh, K. Venkataraman, D. R. Samant, and U. G. Gadgil, “Effects of diltiazem on cation transport across erythrocyte membranes of hypertensive humans,” Hypertension, vol. 9, no. 1, pp. 18–23, 1987. View at Google Scholar · View at Scopus
  8. J. Duhm and J. Behr, “Role of exogenous factors in alterations of red cell Na+-Li+ exchange and Na+-K+ cotransport in essential hypertension, primary hyperaldosteronism, and hypokalemia,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 46, supplement 180, pp. 82–95, 1986. View at Google Scholar · View at Scopus
  9. R. Osiecki, C. Malfatti, L. Royes, R. Sampedro, and C. Mello, “Effects of chronic swimming on blood pressure and sodium pump of hypertensive rats,” Journal of Exercise Physiology Online, vol. 11, no. 5, pp. 35–41, 2008. View at Google Scholar · View at Scopus
  10. P. Ferrari, M. Ferrandi, G. Valentini, P. Manunta, and G. Bianchi, “Targeting Ouabain- and Adducin-dependent mechanisms of hypertension and cardiovascular remodeling as a novel pharmacological approach,” Medical Hypotheses, vol. 68, no. 6, pp. 1307–1314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. V. Chobanian, G. L. Bakris, H. R. Black et al., “Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure,” Hypertension, vol. 42, no. 6, pp. 1206–1252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Niggli, E. S. Adunyah, J. T. Penniston, and E. Carafoli, “Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids,” Journal of Biological Chemistry, vol. 256, no. 1, pp. 395–401, 1981. View at Google Scholar · View at Scopus
  13. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  14. M. Reinila, E. MacDonald, and N. Salem, “Standardized method for the determination of human erythrocyte membrane adenosine triphosphatases,” Analytical Biochemistry, vol. 124, no. 1, pp. 19–26, 1982. View at Google Scholar · View at Scopus
  15. P. A. Lanzetta, L. J. Alvarez, P. S. Reinach, and O. A. Candia, “An improved assay for nanomole amounts of inorganic phosphate,” Analytical Biochemistry, vol. 100, no. 1, pp. 95–97, 1979. View at Google Scholar · View at Scopus
  16. N. D. Stojadinovic, M. R. Petronijević, M. H. Pavićević, B. B. Mršulja, and M. M. Kostić, “Alteration of erythrocyte membrane Na+,K+-ATPase in children with borderline or essential hypertension,” Cell Biochemistry and Function, vol. 14, no. 2, pp. 79–87, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Arakawa, “Hypertension and exercise,” Clinical and Experimental Hypertension, vol. 15, no. 6, pp. 1171–1179, 1993. View at Google Scholar · View at Scopus
  18. T. Iwamoto, S. Kita, J. Zhang et al., “Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle,” Nature Medicine, vol. 10, no. 11, pp. 1193–1199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Poburko, K. H. Kuo, J. Dai, C. H. Lee, and C. Van Breemen, “Organellar junctions promote targeted Ca2+ signaling in smooth muscle: why two membranes are better than one,” Trends in Pharmacological Sciences, vol. 25, no. 1, pp. 8–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. F. Hoffman, A. Wickrema, O. Potapova, M. Milanick, and D. R. Yingst, “Na pump isoforms in human erythroid progenitor cells and mature erythrocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14572–14577, 2002. View at Publisher · View at Google Scholar · View at Scopus