Table of Contents Author Guidelines Submit a Manuscript
Erratum

An erratum for this article has been published. To view the erratum, please click here.

The Scientific World Journal
Volume 2012, Article ID 381434, 21 pages
http://dx.doi.org/10.1100/2012/381434
Review Article

The Role of Neurokinin-1 Receptor in the Microenvironment of Inflammation and Cancer

1Research Laboratory on Neuropeptides, Hospital Infantil Universitario Virgen del Rocío, Avenida Manuel Siurot s/n, 41013 Seville, Spain
2Department of Pediatric Infectious Diseases and Immunology, Hospital Infantil Universitario Virgen del Rocío, Avenida Manuel Siurot s/n, 41013 Seville, Spain
3Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 4, 80337 Munich, Germany

Received 29 October 2011; Accepted 20 November 2011

Academic Editors: D. A. Altomare and A. K. Kiemer

Copyright © 2012 Marisa Rosso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Morgan, R. Ward, and M. Barton, “The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies,” Clinical Oncology, vol. 16, no. 8, pp. 549–560, 2004. View at Publisher · View at Google Scholar
  2. G. Germano, R. Frapolli, M. Simone et al., “Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells,” Cancer Research, vol. 70, no. 6, pp. 2235–2244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Huang and V. L. Korlipara, “Neurokinin-1 receptor antagonists: a comprehensive patent survey,” Expert Opinion on Therapeutic Patents, vol. 20, no. 8, pp. 1019–1045, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Liang, M. Kujawski, J. Wu et al., “Antitumor activity of targeting Src kinases in endothelial and myeloid cell compartments of the tumor microenvironment,” Clinical Cancer Research, vol. 16, no. 3, pp. 924–935, 2010. View at Publisher · View at Google Scholar
  5. M. Muñoz, M. Rosso, and R. Coveñas, “The NK-1 receptor: a new target in cancer therapy,” Current Drug Targets, vol. 12, no. 6, pp. 909–921, 2011. View at Publisher · View at Google Scholar
  6. J. Vanden Broeck, H. Torfs, J. Poels et al., “Tachykinin-like peptides and their receptors. A review,” Annals of the New York Academy of Sciences, vol. 897, pp. 374–387, 1999. View at Google Scholar · View at Scopus
  7. R. Patacchini and C. A. Maggi, “Peripheral tachykinin receptors as targets for new drugs,” European Journal of Pharmacology, vol. 429, no. 1–3, pp. 13–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. S. Wolf, T. W. Moody, R. Quirion, and T. L. O'Donohue, “Biochemical characterization and autoradiographic localization of central substance P receptors using [125I]physalaemin,” Brain Research, vol. 332, no. 2, pp. 299–307, 1985. View at Publisher · View at Google Scholar · View at Scopus
  9. T. V. Dam and R. Quirion, “Pharmacological characterization and autoradiographic localization of substance P receptors in guinea pig brain,” Peptides, vol. 7, no. 5, pp. 855–864, 1986. View at Google Scholar · View at Scopus
  10. J. A. Danks, R. B. Rothman, M. A. Cascieri et al., “A comparative autoradiographic study of the distributions of substance P and eledoisin binding sites in rat brain,” Brain Research, vol. 385, no. 2, pp. 273–281, 1986. View at Google Scholar
  11. M. Saffroy, J. C. Beaujouan, Y. Torrens, J. Besseyre, L. Bergström, and J. Glowinski, “Localization of tachykinin binding sites (NK-1, NK-2, NK-3 ligands) in the rat brain,” Peptides, vol. 9, no. 2, pp. 227–241, 1988. View at Google Scholar · View at Scopus
  12. H. Maeno, H. Kiyama, and M. Tohyama, “Distribution of the substance P receptor (NK-1 receptor) in the central nervous system,” Molecular Brain Research, vol. 18, no. 1-2, pp. 43–58, 1993. View at Google Scholar · View at Scopus
  13. I. Rollandy, C. Dreux, V. Imhoff, and B. Rossignol, “Importance of the presence of the N-terminal tripeptide of substance P for the stimulation of phosphatidylinositol metabolism in rat parotid gland: a possible activation of phospholipases C and D,” Neuropeptides, vol. 13, no. 3, pp. 175–185, 1989. View at Google Scholar · View at Scopus
  14. L. Pradier, E. Heuillet, J. P. Hubert, M. Laville, S. Le Guern, and A. Doble, “Substance P-evoked calcium mobilization and ionic current activation in the human astrocytoma cell line U 373 MG: pharmacological characterization,” Journal of Neurochemistry, vol. 61, no. 5, pp. 1850–1858, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Luo, T. R. Sharif, and M. Sharif, “Substance P-induced mitogenesis in human astrocytoma cells correlates with activation of the mitogen-activated protein kinase signaling pathway,” Cancer Research, vol. 56, no. 21, pp. 4983–4991, 1996. View at Google Scholar · View at Scopus
  16. K. A. deFea, J. Zalevsky, M. S. Thoma, O. Déry, R. D. Mullins, and N. W. Bunnett, “β-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2,” Journal of Cell Biology, vol. 148, no. 6, pp. 1267–1281, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Palma, “Tachykinins and their receptors in human malignancies,” Current Drug Targets, vol. 7, no. 8, pp. 1043–1052, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Muñoz, A. González-Ortega, and R. Coveñas, “The NK-1 receptor is expressed in human leukemia and is involved in the antitumor action of aprepitant and other NK-1 receptor antagonists on acute lymphoblastic leukemia cell lines,” Investigational New Drugs. In press. View at Publisher · View at Google Scholar
  19. M. Muñoz, M. Rosso, A. Pérez et al., “The NK-1 receptor is involved in the antitumoural action of L-733,060 and in the mitogenic action of substance P on neuroblastoma and glioma cell lines,” Neuropeptides, vol. 39, no. 4, pp. 427–432, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Muñoz, M. Rosso, A. Pérez et al., “Antitumoral action of the neurokinin-1-receptor antagonist L-733,060 and mitogenic action of substance P on human retinoblastoma cell lines,” Investigative Ophthalmology and Visual Science, vol. 46, no. 7, pp. 2567–2570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Rosso and R. Coveñas, “The NK-1 receptor is involved in the antitumoural action of L-733,060 and in the mitogenic action of substance P on human pancreatic cancer cell lines,” Letters in Drug Design and Discovery, vol. 3, no. 5, pp. 323–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. B. A. Levine, Neuropeptide Research Trends, Nova Science Publishers, Huntington, NY, USA, 2007.
  23. M. Muñoz, M. Rosso, F. J. Aguilar, M. A. González-Moles, M. Redondo, and F. Esteban, “NK-1 receptor antagonists induce apoptosis and counteract substance P-related mitogenesis in human laryngeal cancer cell line HEp-2,” Investigational New Drugs, vol. 26, no. 2, pp. 111–118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Muñoz, A. Pérez, M. Rosso, C. Zamarriego, and R. Rosso, “Antitumoral action of the neurokinin-1 receptor antagonist L-733 060 on human melanoma cell lines,” Melanoma Research, vol. 14, no. 3, pp. 183–188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Rosso, M. J. Robles-Frías, R. Coveñas, M. V. Salinas-Martín, and M. Muñoz, “The NK-1 receptor is expressed in human primary gastric and colon adenocarcinomas and is involved in the antitumor action of L-733,060 and the mitogenic action of substance P on human gastrointestinal cancer cell lines,” Tumor Biology, vol. 29, no. 4, pp. 245–254, 2008. View at Publisher · View at Google Scholar
  26. B. Pernow, “Substance P,” Pharmacological Reviews, vol. 35, no. 2, pp. 85–141, 1983. View at Google Scholar · View at Scopus
  27. B. Pernow, “Substance P—a putative mediator of antidromic vasodilation,” General Pharmacology, vol. 14, no. 1, pp. 13–16, 1983. View at Google Scholar · View at Scopus
  28. T. Hökfelt, S. Vincent, C. J. Dalsgaard et al., “Distribution of substance P in brain and periphery and its possible role as a co-transmitter,” Ciba Foundation Symposium, no. 91, pp. 84–106, 1982. View at Google Scholar · View at Scopus
  29. T. Hökfelt, B. Pernow, and J. Wahren, “Substance P: a pioneer amongst neuropeptides,” Journal of Internal Medicine, vol. 249, no. 1, pp. 27–40, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Unger, W. Rascher, and C. Schuster, “Central blood pressure effects of substance P and angiotensin II: role of the sympathetic nervous system and vasopressin,” European Journal of Pharmacology, vol. 71, no. 1, pp. 33–42, 1981. View at Google Scholar · View at Scopus
  31. A. D. Hershey, L. Polenzani, R. M. Woodward, R. Miledi, and J. E. Krause, “Molecular and genetic characterization, functional expression, and mRNA expression patterns of a rat substance P receptor,” Annals of the New York Academy of Sciences, vol. 632, pp. 63–78, 1991. View at Google Scholar · View at Scopus
  32. L. Quartara and C. A. Maggi, “The tachykinin receptor. Part II: distribution and pathophysiological roles,” Neuropeptides, vol. 32, no. 1, pp. 1–49, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. N. M. Rupniak, E. Carlson, S. Boyce, J. K. Webb, and R. G. Hill, “Enantioselective inhibition of the formalin paw late phase by the NK-1 receptor antagonist L-733,060 in gerbils,” Pain, vol. 67, no. 1, pp. 189–195, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. M. S. Kramer, N. Cutler, J. Feighner et al., “Distinct mechanism for antidepressant activity by blockade of central substance P receptors,” Science, vol. 281, no. 5383, pp. 1640–1645, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. G. B. Varty, M. E. Cohen-Williams, and J. C. Hunter, “The antidepressant-like effects of neurokinin NK-1 receptor antagonists in a gerbil tail suspension test,” Behavioural Pharmacology, vol. 14, no. 1, pp. 87–95, 2003. View at Google Scholar · View at Scopus
  36. K. L. Bost, “Tachykinin-mediated modulation of the immune response,” Frontiers in Bioscience, vol. 9, pp. 3331–3332, 2004. View at Google Scholar · View at Scopus
  37. A. Eglezos, P. V. Andrews, R. L. Boyd, and R. D. Helme, “Modulation of the immune response by tachykinins,” Immunology and Cell Biology, vol. 69, no. 4, pp. 285–294, 1991. View at Google Scholar · View at Scopus
  38. T. A. Castro, M. C. Cohen, and P. Rameshwar, “The expression of neurokinin-1 and preprotachykinin-1 in breast cancer cells depends on the relative degree of invasive and metastatic potential,” Clinical and Experimental Metastasis, vol. 22, no. 8, pp. 621–628, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Rao, P. S. Patel, S. P. Idler et al., “Facilitating role of preprotachykinin-I gene in the integration of breast cancer cells within the stromal compartment of the bone marrow: a model of early cancer progression,” Cancer Research, vol. 64, no. 8, pp. 2874–2881, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. A. S. Singh, A. Caplan, K. E. Corcoran, J. S. Fernandez, M. Preziosi, and P. Rameshwar, “Oncogenic and metastatic properties of preprotachykinin-I and neurokinin-1 genes,” Vascular Pharmacology, vol. 45, no. 4, pp. 235–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Singh, D. D. Joshi, M. Hameed et al., “Increased expression of preprotachykinin-I and neurokinin receptors in human breast cancer cells: implications for bone marrow metastasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 1, pp. 388–393, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Almendro, S. García-Recio, and P. Gascón, “Tyrosine kinase receptor transactivation associated to G protein-coupled receptors,” Current Drug Targets, vol. 11, no. 9, pp. 1169–1180, 2010. View at Publisher · View at Google Scholar
  43. I. Castagliuolo, L. Valenick, J. Liu, and C. Pothoulakis, “Epidermal growth factor receptor transactivation mediates substance P-induced mitogenic responses in U-373 MG cells,” Journal of Biological Chemistry, vol. 275, no. 34, pp. 26545–26550, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. H. W. Koon, D. Zhao, X. Na, M. P. Moyer, and C. Pothoulakis, “Metalloproteinases and transforming growth factor-α mediate substance p-induced mitogen-activated protein kinase activation and proliferation in human colonocytes,” Journal of Biological Chemistry, vol. 279, no. 44, pp. 45519–45527, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. C. J. Wiedermann, B. Auer, B. Sitte, N. Reinisch, P. Schratzberger, and C. M. Kähler, “Induction of endothelial cell differentiation into capillary-like structures by substance P,” European Journal of Pharmacology, vol. 298, no. 3, pp. 335–338, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Ziche, L. Morbidelli, M. Pacini, P. Geppetti, G. Alessandri, and C. A. Maggi, “Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells,” Microvascular Research, vol. 40, no. 2, pp. 264–278, 1990. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Schulz, R. Stumm, C. Röcken, C. Mawrin, and S. Schulz, “Immunolocalization of full-length NK-1 tachykinin receptors in human tumors,” Journal of Histochemistry and Cytochemistry, vol. 54, no. 9, pp. 1015–1020, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Caberlotto, Y. L. Hurd, P. Murdock et al., “Neurokinin 1 receptor and relative abundance of the short and long isoforms in the human brain,” European Journal of Neuroscience, vol. 17, no. 9, pp. 1736–1746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. J. P. McGillis, M. Mitsuhashi, and D. G. Payan, “Immunomodulation by tachykinin neuropeptides,” Annals of the New York Academy of Sciences, vol. 594, pp. 85–94, 1990. View at Publisher · View at Google Scholar · View at Scopus
  50. M. L. Organist, J. P. Harvey, J. P. McGillis, and D. G. Payan, “Processing of the human IM-9 lymphoblast substance P receptor. Biosynthetic and degradation studies using a monoclonal anti-receptor antibody,” Biochemical and Biophysical Research Communications, vol. 151, no. 1, pp. 535–541, 1988. View at Google Scholar · View at Scopus
  51. F. W. van Ginkel and D. W. Pascual, “Recognition of neurokinin 1 receptor (NK-1-R): an antibody to a peptide sequence from the third extracellular region binds to brain NK-1-R,” Journal of Neuroimmunology, vol. 67, no. 1, pp. 49–58, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Nakata, C. Hiraoka, and T. Segawa, “Apparent molecular weight of the substance P binding site in rat brain,” European Journal of Pharmacology, vol. 152, no. 1-2, pp. 171–174, 1988. View at Google Scholar · View at Scopus
  53. M. Muñoz, M. Rosso, R. Coveñas, I. Montero, M. A. González-Moles, and M. J. Robles, “Neurokinin-1 receptors located in human retinoblastoma cell lines: antitumor action of its antagonist, L-732,138,” Investigative Ophthalmology and Visual Science, vol. 48, no. 6, pp. 2775–2781, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Esteban, M. Muñoz, M. A. González-Moles, and M. Rosso, “A role for substance P in cancer promotion and progression: a mechanism to counteract intracellular death signals following oncogene activation or DNA damage,” Cancer and Metastasis Reviews, vol. 25, no. 1, pp. 137–145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Friess, Z. Zhu, V. Liard et al., “Neurokinin-1 receptor expression and its potential effects on tumor growth in human pancreatic cancer,” Laboratory Investigation, vol. 83, no. 5, pp. 731–742, 2003. View at Google Scholar
  56. D. G. Payan, J. P. McGillis, and M. L. Organist, “Binding chracteristics and affinity labeling of protein constituents of the human IM-9 lymphoblast receptor for substance P,” Journal of Biological Chemistry, vol. 261, no. 30, pp. 14321–14329, 1986. View at Google Scholar · View at Scopus
  57. C. J. Fowler and G. Brännstrom, “Substance P enhances forskolin-stimulated cyclic AMP production in human UC11MG astrocytoma cells,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 16, no. 1, pp. 21–28, 1994. View at Google Scholar · View at Scopus
  58. I. M. Hennig, J. A. Laissue, U. Horisberger, and J. C. Reubi, “Substance-P receptors in human primary neoplasms: tumoral and vascular localization,” International Journal of Cancer, vol. 61, no. 6, pp. 786–792, 1995. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Harrison and P. Geppetti, “Substance P,” International Journal of Biochemistry and Cell Biology, vol. 33, no. 6, pp. 555–576, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. C. Ma, J. Huang, S. Ali, W. Lowry, and X. Y. Huang, “Src tyrosine kinase is a novel direct effector of G proteins,” Cell, vol. 102, no. 5, pp. 635–646, 2000. View at Google Scholar · View at Scopus
  61. S. Horstmann, P. J. Kahle, and G. D. Borasio, “Inhibitors of p38 mitogen-activated protein kinase promote neuronal survival in vitro,” Journal of Neuroscience Research, vol. 52, no. 4, pp. 483–490, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. Xia, M. Dickens, J. Raingeaud, R. J. Davis, and M. E. Greenberg, “Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis,” Science, vol. 270, no. 5240, pp. 1326–1331, 1995. View at Google Scholar · View at Scopus
  63. Y. Daaka, L. M. Luttrell, and R. J. Lefkowitz, “Switching of the coupling of the β2-adrenergic receptor to different g proteins by protein kinase A,” Nature, vol. 390, no. 6655, pp. 88–91, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. L. M. Luttrell, S. S. G. Ferguson, Y. Daaka et al., “β-arrestin-dependent formation of β2 adrenergic receptor-src protein kinase complexes,” Science, vol. 283, no. 5402, pp. 655–661, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. A. P. Belsches-Jablonski, J. S. Biscardi, D. R. Peavy, D. A. Tice, D. A. Romney, and S. J. Parsons, “Src family kinases and HER2 interactions in human breast cancer cell growth and survival,” Oncogene, vol. 20, no. 12, pp. 1465–1475, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Muñoz, M. Rosso, and R. Coveñas, “A new frontier in the treatment of cancer: NK-1 receptor antagonists,” Current Medicinal Chemistry, vol. 17, no. 6, pp. 504–516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. J. J. Bowden, A. M. Garland, P. Baluk et al., “Direct observation of substance P-induced internalization of neurokinin 1 (NK-1) receptors at sites of inflammation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 19, pp. 8964–8968, 1994. View at Publisher · View at Google Scholar · View at Scopus
  68. A. M. Garland, E. F. Grady, D. G. Payan, S. R. Vigna, and N. W. Bunnett, “Agonist-induced internalization of the substance P (NK-1) receptor expressed in epithelial cells,” Biochemical Journal, vol. 303, no. 1, pp. 177–186, 1994. View at Google Scholar · View at Scopus
  69. E. F. Grady, A. M. Garland, P. D. Gamp, M. Lovett, D. G. Payan, and N. W. Bunnett, “Delineation of the endocytic pathway of substance P and its seven- transmembrane domain NK-1 receptor,” Molecular Biology of the Cell, vol. 6, no. 5, pp. 509–524, 1995. View at Google Scholar · View at Scopus
  70. P. W. Mantyh, C. J. Allen, J. R. Ghilardi et al., “Rapid endocytosis of a G protein-coupled receptor: substance P-evoked internalization of its receptor in the rat striatum in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 7, pp. 2622–2626, 1995. View at Publisher · View at Google Scholar · View at Scopus
  71. E. G. Ignatova, M. M. Belcheva, L. M. Bohn, M. C. Neuman, and C. J. Coscia, “Requirement of receptor internalization for opioid stimulation of mitogen-activated protein kinase: biochemical and immunofluorescence confocal microscopic evidence,” Journal of Neuroscience, vol. 19, no. 1, pp. 56–63, 1999. View at Google Scholar · View at Scopus
  72. O. Vögler, B. Nolte, M. Voss, M. Schmidt, K. H. Jakobs, and C. J. van Koppen, “Regulation of muscarinic acetylcholine receptor sequestration and function by β-arrestin,” Journal of Biological Chemistry, vol. 274, no. 18, pp. 12333–12338, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. V. L. Lowes, N. Y. Ip, and Y. H. Wong, “Integration of signals from receptor tyrosine kinases and G protein-coupled receptors,” Neuro-Signals, vol. 11, no. 1, pp. 5–19, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Q. Cheng, D. A. Altomare, M. A. Klein et al., “Transforming activity and mitosis-related expression of the AKT2 oncogene: evidence suggesting a link between cell cycle regulation and oncogenesis,” Oncogene, vol. 14, no. 23, pp. 2793–2801, 1997. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Dudek, S. R. Datta, T. F. Franke et al., “Regulation of neuronal survival by the serine-threonine protein kinase Akt,” Science, vol. 275, no. 5300, pp. 661–665, 1997. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Akazawa, S. G. Kwatra, L. E. Goldsmith et al., “A constitutively active form of neurokinin 1 receptor and neurokinin 1 receptor-mediated apoptosis in glioblastomas,” Journal of Neurochemistry, vol. 109, no. 4, pp. 1079–1086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. D. T. Walsh, V. B. Weg, T. J. Williams, and S. Nourshargh, “Substance P-induced inflammatory responses in guinea-pig skin: the effect of specific NK-1 receptor antagonists and the role of endogenous mediators,” British Journal of Pharmacology, vol. 114, no. 7, pp. 1343–1350, 1995. View at Google Scholar · View at Scopus
  78. F. Entschladen, K. Lang, T. L. Drell, J. Joseph, and K. S. Zaenker, “Neurotransmitters are regulators for the migration of tumor cells and leukocytes,” Cancer Immunology, Immunotherapy, vol. 51, no. 9, pp. 467–482, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Schratzberger, N. Reinisch, W. M. Prodinger et al., “Differential chemotactic activities of sensory neuropeptides for human peripheral blood mononuclear cells,” Journal of Immunology, vol. 158, no. 8, pp. 3895–3901, 1997. View at Google Scholar · View at Scopus
  80. H. L. Rittner, C. Lux, D. Labuz et al., “Neurokinin-1 receptor antagonists inhibit the recruitment of opioid-containing leukocytes and impair peripheral antinociception,” Anesthesiology, vol. 107, no. 6, pp. 1009–1017, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. M. R. Ruff, S. M. Wahl, and C. B. Pert, “Substance P receptor-mediated chemotaxis of human monocytes,” Peptides, vol. 6, no. 2, pp. 107–111, 1985. View at Google Scholar · View at Scopus
  82. S. Dunzendorfer, C. Meierhofer, and C. J. Wiedermann, “Signaling in neuropeptide-induced migration of human eosinophils,” Journal of Leukocyte Biology, vol. 64, no. 6, pp. 828–834, 1998. View at Google Scholar · View at Scopus
  83. S. Koyama, E. Sato, H. Nomura, K. Kubo, S. Nagai, and T. Izumi, “Acetylcholine and substance P stimulate bronchial epithelial cells to release eosinophil chemotactic activity,” Journal of Applied Physiology, vol. 84, no. 5, pp. 1528–1534, 1998. View at Google Scholar · View at Scopus
  84. J. Meshki, S. D. Douglas, J. Lai, L. Schwartz, L. E. Kilpatrick, and F. Tuluc, “Neurokinin 1 receptor mediates membrane blebbing in HEK293 cells through a Rho/Rho-associated coiled-coil kinase-dependent mechanism,” Journal of Biological Chemistry, vol. 284, no. 14, pp. 9280–9289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Monastyrskaya, A. Hostettler, S. Buergi, and A. Draeger, “The NK-1 receptor localizes to the plasma membrane microdomains, and its activation is dependent on lipid raft integrity,” Journal of Biological Chemistry, vol. 280, no. 8, pp. 7135–7146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Liu, R. Sun, W. Wan et al., “The involvement of lipid rafts in epidermal growth factor-induced chemotaxis of breast cancer cells,” Molecular Membrane Biology, vol. 24, no. 2, pp. 91–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Schwarz-Cruz-y-Celis and J. Meléndez-Zajgla, “Cancer stem cells,” Revista de Investigación Clínica; Organo del Hospital de Enfermedades de la Nutrición, vol. 63, no. 2, pp. 179–186, 2011. View at Google Scholar
  88. S. Srivastava and S. Krishna, “Cancer stem cells: an approach to identify newer therapeutic targets,” Journal of Stem Cells, vol. 4, no. 2, pp. 123–131, 2009. View at Google Scholar · View at Scopus
  89. A. Ho and N. Fusenig, “Cancer stem cells: a promising concept and therapeutic challenge,” International Journal of Cancer, vol. 129, no. 10, p. 2309, 2011. View at Publisher · View at Google Scholar
  90. C. Nagler, K. S. Zänker, and T. Dittmar, “Cell fusion, drug resistance and recurrence CSCs,” Advances in Experimental Medicine and Biology, vol. 714, pp. 173–182, 2011. View at Google Scholar
  91. H. Chen, A. S.-B. Chou, Y.-C. Liu et al., “Induction of metastatic cancer stem cells from the NK/LAK-resistant floating, but not adherent, subset of the UP-LN1 carcinoma cell line by IFN-γ,” Laboratory Investigation, vol. 91, no. 10, pp. 1502–1513, 2011. View at Publisher · View at Google Scholar
  92. Y. Li, S. D. Douglas, and W. Ho, “Human stem cells express substance P gene and its receptor,” Journal of Hematotherapy and Stem Cell Research, vol. 9, no. 4, pp. 445–452, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Nowicki, D. Ostalska-Nowicka, B. Kondraciuk, and B. Miskowiak, “The significance of substance P in physiological and malignant haematopoiesis,” Journal of Clinical Pathology, vol. 60, no. 7, pp. 749–755, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. P. Rameshwar and P. Gascón, “Hematopoietic modulation by the tachykinins,” Acta Haematologica, vol. 98, no. 2, pp. 59–64, 1997. View at Google Scholar · View at Scopus
  95. K. Liu, M. D. Castillo, R. G. Murthy, N. Patel, and P. Rameshwar, “Tachykinins and hematopoiesis,” Clinica Chimica Acta, vol. 385, no. 1, pp. 28–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Berger, P. Benveniste, S. A. Corfe et al., “Targeted deletion of the tachykinin 4 gene (TAC4-/-) influences the early stages of B lymphocyte development,” Blood, vol. 116, no. 19, pp. 3792–3801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Nowicki, D. Ostalska-Nowicka, A. Konwerska, and B. Miskowiak, “The predicting role of substance P in the neoplastic transformation of the hypoplastic bone marrow,” Journal of Clinical Pathology, vol. 59, no. 9, pp. 935–941, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. Zhang, L. Lu, C. Furlonger, G. E. Wu, and C. J. Paige, “Hemokinin is a hematopoietic-specific tachykinin that regulates B lymphopoiesis,” Nature Immunology, vol. 1, no. 5, pp. 392–397, 2000. View at Google Scholar · View at Scopus
  99. W. Wang, Q. Li, J. Zhang et al., “Hemokinin-1 activates the MAPK pathway and enhances B cell proliferation and antibody production,” Journal of Immunology, vol. 184, no. 7, pp. 3590–3597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. B. M. Janelsins, A. R. Mathers, O. A. Tkacheva et al., “Proinflammatory tachykinins that signal through the neurokinin 1 receptor promote survival of dendritic cells and potent cellular immunity,” Blood, vol. 113, no. 13, pp. 3017–3026, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. Zhang and C. J. Paige, “T-cell developmental blockage by tachykinin antagonists and the role of hemokinin 1 in T lymphopoiesis,” Blood, vol. 102, no. 6, pp. 2165–2172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. F. Bellucci, F. Carini, C. Catalani et al., “Pharmacological profile of the novel mammalian tachykinin, hemokinin 1,” British Journal of Pharmacology, vol. 135, no. 1, pp. 266–274, 2002. View at Google Scholar · View at Scopus
  103. L. A. Chahl and R. J. Ladd, “Local oedema and general excitation of cutaneous receptors produced by electrical stimulation of the saphenous nerve in the rat,” Pain, vol. 2, no. 1, pp. 25–34, 1976. View at Publisher · View at Google Scholar · View at Scopus
  104. F. Lembeck and P. Holzer, “Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 310, no. 2, pp. 175–183, 1979. View at Google Scholar · View at Scopus
  105. J. B. Furness, R. E. Papka, N. G. Della, M. Costa, and R. L. Eskay, “Substance P-like immunoreactivity in nerves associated with the vascular system of guinea-pigs,” Neuroscience, vol. 7, no. 2, pp. 447–459, 1982. View at Publisher · View at Google Scholar
  106. J. M. Lundberg, E. Brodin, X. Hua, and A. Saria, “Vascular permeability changes and smooth muscle contraction in relation to capsaicin-sensitive Substance P afferents in the guinea pig,” Acta Physiologica Scandinavica, vol. 120, no. 2, pp. 217–227, 1984. View at Google Scholar · View at Scopus
  107. D. W. Pascual, J. C. Xu-Amano, H. Kiyono, J. R. McGhee, and K. L. Bost, “Substance P acts directly upon cloned B lymphoma cells to enhance IgA and IgM production,” Journal of Immunology, vol. 146, no. 7, pp. 2130–2136, 1991. View at Google Scholar
  108. C. Feistritzer, J. Clausen, D. H. Sturn et al., “Natural killer cell functions mediated by the neuropeptide substance P,” Regulatory Peptides, vol. 116, no. 1, pp. 119–126, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. K. Lieb, B. L. Fiebich, M. Berger, J. Bauer, and K. Schulze-Osthoff, “The neuropeptide substance P activates transcription factor NF-κB and κ B-dependent gene expression in human astrocytoma cells,” Journal of Immunology, vol. 159, no. 10, pp. 4952–4958, 1997. View at Google Scholar
  110. J. V. Weinstock, A. Blum, J. Walder, and R. Walder, “Eosinophils from granulomas in murine Schistosomiasis mansoni produce substance P,” Journal of Immunology, vol. 141, no. 3, pp. 961–966, 1988. View at Google Scholar
  111. G. A. Cook, D. Elliott, A. Metwali et al., “Molecular evidence that granuloma T lymphocytes in murine Schistosomiasis mansoni express an authentic substance P (NK-1) receptor,” Journal of Immunology, vol. 152, no. 4, pp. 1830–1835, 1994. View at Google Scholar
  112. U. Keränen, H. Järvinen, P. Kärkkäinen, T. Kiviluoto, E. Kivilaakso, and S. Soinila, “Substance P—an underlying factor for pouchitis? Prospective study of substance P- and vasoactive intestinal polypeptide-immunoreactive innervation and mast cells,” Digestive Diseases and Sciences, vol. 41, no. 8, pp. 1665–1671, 1996. View at Google Scholar · View at Scopus
  113. U. Keränen, H. Järvinen, T. Kiviluoto, E. Kivilaakso, and S. Soinila, “Substance P- and vasoactive intestinal polypeptide-immunoreactive innervation in normal and inflamed pouches after restorative proctocolectomy for ulcerative colitis,” Digestive Diseases and Sciences, vol. 41, no. 8, pp. 1658–1664, 1996. View at Google Scholar · View at Scopus
  114. D. G. Payan, D. R. Brewster, A. Missirian-Bastian, and E. J. Goetzl, “Substance P recognition by a subset of human T lymphocytes,” Journal of Clinical Investigation, vol. 74, no. 4, pp. 1532–1539, 1984. View at Google Scholar · View at Scopus
  115. A. Haddow, “Molecular repair, wound healing, and carcinogenesis: tumor production a possible overhealing?” Advances in Cancer Research, vol. 16, pp. 181–234, 1973. View at Publisher · View at Google Scholar · View at Scopus
  116. H. F. Dvorak, “Tumors: wounds that do not heal: similarities between tumor stroma generation and wound healing,” New England Journal of Medicine, vol. 315, no. 26, pp. 1650–1659, 1986. View at Google Scholar · View at Scopus
  117. S. A. Weitzman and L. I. Gordon, “Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis,” Blood, vol. 76, no. 4, pp. 655–663, 1990. View at Google Scholar · View at Scopus
  118. B. N. Ames and L. S. Gold, “Carcinogenesis debate,” Science, vol. 250, no. 4987, pp. 1498–1499, 1990. View at Google Scholar · View at Scopus
  119. C. Tong, M. Fazio, and G. M. Williams, “Cell cycle-specific mutagenesis at the hypoxanthine phosphoribosyltransferase locus in adult rat liver epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 12, pp. 7377–7379, 1980. View at Google Scholar · View at Scopus
  120. M. Macarthur, G. L. Hold, and E. M. El-Omar, “Inflammation and cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy,” American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 286, no. 4, pp. G515–G520, 2004. View at Google Scholar · View at Scopus
  121. T. M. O'Connor, J. O'Connell, D. I. O'Brien, T. Goode, C. P. Bredin, and F. Shanahan, “The role of substance P in inflammatory disease,” Journal of Cellular Physiology, vol. 201, no. 2, pp. 167–180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. E. Gillespie, S. E. Leeman, L. A. Watts et al., “Truncated neurokinin-1 receptor is increased in colonic epithelial cells from patients with colitis-associated cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 42, pp. 17420–17425, 2011. View at Publisher · View at Google Scholar
  123. M. J. Blaser, P. H. Chyou, and A. Nomura, “Age at establishment of Helicobacter pylori infection and gastric carcinoma, gastric ulcer, and duodenal ulcer risk,” Cancer Research, vol. 55, no. 3, pp. 562–565, 1995. View at Google Scholar · View at Scopus
  124. A. B. Lowenfels, P. Maisonneuvi, G. Cavallini et al., “Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group,” New England Journal of Medicine, vol. 328, no. 20, pp. 1433–1437, 1993. View at Publisher · View at Google Scholar
  125. S. V. Shrikhande, H. Friess, F. F. Di Mola et al., “NK-1 receptor gene expression is related to pain in chronic pancreatitis,” Pain, vol. 91, no. 3, pp. 209–217, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. W. Luo, T. Sharif, and M. Sharif, “Substance P-induced mitogenesis in human astrocytoma cells correlates with activation of the mitogen-activated protein kinase signaling pathway,” Cancer Research, vol. 56, no. 21, pp. 4983–4991, 1996. View at Google Scholar · View at Scopus
  127. M. Muñoz, A. Pérez, R. Coveñas, M. Rosso, and E. Castro, “Antitumoural action of L-733,060 on neuroblastoma and glioma cell lines,” Archives Italiennes de Biologie, vol. 142, no. 2, pp. 105–112, 2004. View at Google Scholar · View at Scopus
  128. S. Akira, S. Bauer, and G. Hartmann, Toll-Like Receptors (TLRs) and Innate Immunity, Springer, New York, NY, USA, 2008.
  129. D. M. Klinman, D. Currie, I. Gursel, and D. Verthelyi, “Use of CpG oligodeoxynucleotides as immune adjuvants,” Immunological Reviews, vol. 199, pp. 201–216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Vollmer and A. M. Krieg, “Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists,” Advanced Drug Delivery Reviews, vol. 61, no. 3, pp. 195–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. S. Demaria, E. Pikarsky, M. Karin et al., “Cancer and inflammation: promise for biologic therapy,” Journal of Immunotherapy, vol. 33, no. 4, pp. 335–351, 2010. View at Publisher · View at Google Scholar
  132. M. Berger, A. Ablasser, S. Kim et al., “TLR8-driven IL-12-dependent reciprocal and synergistic activation of NK cells and monocytes by immunostimulatory RNA,” Journal of Immunotherapy, vol. 32, no. 3, pp. 262–271, 2009. View at Publisher · View at Google Scholar
  133. C. Bourquin, L. Schmidt, A. -L. Lanz et al., “Immunostimulatory RNA oligonucleotides induce an effective antitumoral NK cell response through the TLR7,” Journal of Immunology, vol. 183, no. 10, pp. 6078–6086, 2009. View at Publisher · View at Google Scholar
  134. A. Ablasser, H. Poeck, D. Anz et al., “Selection of molecular structure and delivery of RNA oligonucleotides to activate TLR7 versus TLR8 and to induce high amounts of IL-12p70 in primary human monocytes,” Journal of Immunology, vol. 182, no. 11, pp. 6824–6833, 2009. View at Publisher · View at Google Scholar
  135. J. L. McCoy, R. Rucker, and J. A. Petros, “Cell-mediated immunity to tumor-associated antigens is a better predictor of survival in early stage breast cancer than stage, grade or lymph node status,” Breast Cancer Research and Treatment, vol. 60, no. 3, pp. 227–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  136. A. Moretta, R. Biassoni, C. Bottino, M. C. Mingari, and L. Moretta, “Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis,” Immunology Today, vol. 21, no. 5, pp. 228–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  137. S. Ben-Eliyahu, “The promotion of tumor metastasis by surgery and stress: immunological basis and implications for psychoneuroimmunology,” Brain, Behavior, and Immunity, vol. 17, no. 1, pp. S27–S36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  138. M. Schäffer, T. Beiter, H. D. Becker, and T. K. Hunt, “Neuropeptides: mediators of inflammation and tissue repair?” Archives of Surgery, vol. 133, no. 10, pp. 1107–1116, 1998. View at Publisher · View at Google Scholar
  139. P. Rameshwar, A. Poddar, G. Zhu, and P. Gascón, “Receptor induction regulates the synergistic effects of substance P with IL-1 and platelet-derived growth factor on the proliferation of bone marrow fibroblasts,” Journal of Immunology, vol. 158, no. 7, pp. 3417–3424, 1997. View at Google Scholar
  140. E. Faist, C. Schinkel, and S. Zimmer, “Update on the mechanisms of immune suppression of injury and immune modulation,” World Journal of Surgery, vol. 20, no. 4, pp. 454–459, 1996. View at Publisher · View at Google Scholar · View at Scopus
  141. E. Lin, S. E. Calvano, and S. F. Lowry, “Inflammatory cytokines and cell response in surgery,” Surgery, vol. 127, no. 2, pp. 117–126, 2000. View at Google Scholar · View at Scopus
  142. R. S. Munford and J. Pugin, “Normal responses to injury prevent systemic inflammation and can be immunosuppressive,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 2, pp. 316–321, 2001. View at Google Scholar · View at Scopus
  143. Bueno J. N., Focus on Neuropeptide Research, 2007.
  144. L. Hilakivi-Clarke, J. Rowland, R. Clarke, and M. E. Lippman, “Psychosocial factors in the development and progression of breast cancer,” Breast Cancer Research and Treatment, vol. 29, no. 2, pp. 141–160, 1994. View at Google Scholar · View at Scopus
  145. M. Okamura, S. Yamawaki, T. Akechi, K. Taniguchi, and Y. Uchitomi, “Psychiatric disorders following first breast cancer recurrence: prevalence, associated factors and relationship to quality of life,” Japanese Journal of Clinical Oncology, vol. 35, no. 6, pp. 302–309, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. J. Folkman, “Fighting cancer by attacking its blood supply,” Scientific American, vol. 275, no. 3, pp. 150–154, 1996. View at Google Scholar · View at Scopus
  147. B. Garssen and K. Goodkin, “On the role of immunological factors as mediators between psychosocial factors and cancer progression,” Psychiatry Research, vol. 85, no. 1, pp. 51–61, 1999. View at Publisher · View at Google Scholar · View at Scopus
  148. S. P. Sivam, J. E. Krause, K. Takeuchi, S. Li, J. F. McGinty, and J. S. Hong, “Lithium increases rat striatal beta- and gamma-preprotachykinin messenger RNAs,” Journal of Pharmacology and Experimental Therapeutics, vol. 248, no. 3, pp. 1297–1301, 1989. View at Google Scholar · View at Scopus
  149. K. Shibata, D. M. Haverstick, and M. J. Bannon, “Tachykinin gene expression in rat limbic nuclei: modulation by dopamine antagonists,” Journal of Pharmacology and Experimental Therapeutics, vol. 255, no. 1, pp. 388–392, 1990. View at Google Scholar · View at Scopus
  150. C. Humpel, K. G. Andrea, A. Bernhard et al., “Effects of haloperidol and clozapine on preprotachykinin-A messenger RNA, tachykinin tissue levels, release and neurokinin-1 receptors in the striato-nigral system,” Synapse, vol. 6, no. 1, pp. 1–9, 1990. View at Publisher · View at Google Scholar · View at Scopus
  151. Y. Shirayama, H. Mitsushio, M. Takashima, H. Ichikawa, and K. Takahashi, “Reduction of substance P after chronic antidepressants treatment in the striatum, substantia nigra and amygdala of the rat,” Brain Research, vol. 739, no. 1, pp. 70–78, 1996. View at Publisher · View at Google Scholar · View at Scopus
  152. C. Devane, “Substance P: a new era, a new role,” Pharmacotherapy, vol. 21, no. 9, pp. 1061–1069, 2001. View at Google Scholar · View at Scopus
  153. K. Lang, T. L. Drell, A. Lindecke et al., “Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs,” International Journal of Cancer, vol. 112, no. 2, pp. 231–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  154. P. W. Mantyh, “Neurobiology of substance P and the NK-1 receptor,” Journal of Clinical Psychiatry, vol. 63, no. 11, pp. 6–10, 2002. View at Google Scholar · View at Scopus
  155. I. J. Elenkov, R. L. Wilder, G. P. Chrousos, and E. S. Vizi, “The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system,” Pharmacological Reviews, vol. 52, no. 4, pp. 595–638, 2000. View at Google Scholar · View at Scopus
  156. A. K. Exadaktylos, D. J. Buggy, D. C. Moriarty, E. Mascha, and D. I. Sessler, “Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis?” Anesthesiology, vol. 105, no. 4, pp. 660–664, 2006. View at Publisher · View at Google Scholar · View at Scopus
  157. M. Muñoz, M. Rosso, F. Casinello, and R. Coveñas, “Paravertebral anesthesia: how substance P and the NK-1 receptor could be involved in regional block and breast cancer recurrence,” Breast Cancer Research and Treatment, vol. 122, no. 2, pp. 601–603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. G. A. M. Giardina, S. Gagliardi, and M. Martinelli, “Antagonists at the neurokinin receptors—recent patent literature,” IDrugs, vol. 6, no. 8, pp. 758–772, 2003. View at Google Scholar
  159. T. A. Almeida, J. Rojo, P. M. Nieto et al., “Tachykinins and tachykinin receptors: structure and activity relationships,” Current Medicinal Chemistry, vol. 11, no. 15, pp. 2045–2081, 2004. View at Google Scholar · View at Scopus
  160. L. Quartara and C. A. Maggi, “The tachykinin NK-1 receptor. Part I: ligands and mechanisms of cellular activation,” Neuropeptides, vol. 31, no. 6, pp. 537–563, 1997. View at Publisher · View at Google Scholar · View at Scopus
  161. C. M. Lee, N. J. Campbell, B. J. Williams, and L. L. Iversen, “Multiple tachykinin binding sites in peripheral tissues and in brain,” European Journal of Pharmacology, vol. 130, no. 3, pp. 209–217, 1986. View at Google Scholar · View at Scopus
  162. L. Quartara and M. Altamura, “Tachykinin receptors antagonists: from research to clinic,” Current Drug Targets, vol. 7, no. 8, pp. 975–992, 2006. View at Publisher · View at Google Scholar · View at Scopus
  163. R. M. Snider, J. W. Constantine, J. A. Lowe et al., “A potent nonpeptide antagonist of the substance P (NK-1) receptor,” Science, vol. 251, no. 4992, pp. 435–437, 1991. View at Google Scholar · View at Scopus
  164. T. Harrison, B. Williams, C. Swain, and R. G. Ball, “Piperidine-ether based hNK-1 antagonists 1: determination of the relative and absolute stereochemical requirements,” Bioorganic and Medicinal Chemistry Letters, vol. 4, no. 21, pp. 2545–2550, 1994. View at Publisher · View at Google Scholar · View at Scopus
  165. N. M. Rupniak, E. C. Carlson, T. Harrison et al., “Pharmacological blockade or genetic deletion of substance P (NK-1) receptors attenuates neonatal vocalisation in guinea-pigs and mice,” Neuropharmacology, vol. 39, no. 8, pp. 1413–1421, 2000. View at Publisher · View at Google Scholar · View at Scopus
  166. R. Bang, G. Sass, A. K. Kiemer, A. M. Vollmar, W. L. Neuhuber, and G. Tiegs, “Neurokinin-1 receptor antagonists CP-96,345 and L-733,060 protect mice from cytokine-mediated liver injury,” Journal of Pharmacology and Experimental Therapeutics, vol. 305, no. 1, pp. 31–39, 2003. View at Publisher · View at Google Scholar · View at Scopus
  167. J. M. Humphrey, “Medicinal chemistry of selective neurokinin-1 antagonists,” Current Topics in Medicinal Chemistry, vol. 3, no. 12, pp. 1423–1435, 2003. View at Google Scholar · View at Scopus
  168. F. D. Tattersall, W. Rycroft, M. Cumberbatch et al., “The novel NK-1 receptor antagonist MK-0869 (L-754,030) and its water soluble phosphoryl prodrug, L-758,298, inhibit acute and delayed cisplatin- induced emesis in ferrets,” Neuropharmacology, vol. 39, no. 4, pp. 652–663, 2000. View at Publisher · View at Google Scholar · View at Scopus
  169. R. M. Navari, “Fosaprepitant (MK-0517): a neurokinin-1 receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting,” Expert Opinion on Investigational Drugs, vol. 16, no. 12, pp. 1977–1985, 2007. View at Publisher · View at Google Scholar · View at Scopus
  170. R. E. Kast, “Why cerebellar glioblastoma is rare and how that indicates adjunctive use of the FDA-approved anti-emetic aprepitant might retard cerebral glioblastoma growth: a new hypothesis to an old question,” Clinical & Translational Oncology, vol. 11, no. 7, pp. 408–410, 2009. View at Google Scholar · View at Scopus
  171. M. Muñoz and M. Rosso, “The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug,” Investigational New Drugs, vol. 28, no. 2, pp. 187–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. M. Muñoz, M. Rosso, M. J. Robles-Frias et al., “The NK-1 receptor is expressed in human melanoma and is involved in the antitumor action of the NK-1 receptor antagonist aprepitant on melanoma cell lines,” Laboratory Investigation, vol. 90, no. 8, pp. 1259–1269, 2010. View at Publisher · View at Google Scholar
  173. C. Palma, M. Bigioni, C. Irrissuto, F. Nardelli, C. A. Maggi, and S. Manzini, “Anti-tumour activity of tachykinin NK-1 receptor antagonists on human glioma U373 MG xenograft,” British Journal of Cancer, vol. 82, no. 2, pp. 480–487, 2000. View at Google Scholar · View at Scopus
  174. P. J. Woll and E. Rozengurt, “[D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P, a potent bombesin antagonist in murine Swiss 3T3 cells, inhibits the growth of human small cell lung cancer cells in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 6, pp. 1859–1863, 1988. View at Publisher · View at Google Scholar · View at Scopus
  175. M. A. González Moles, F. Esteban, I. Ruiz-īvila et al., “A role for the substance P/NK-1 receptor complex in cell proliferation and apoptosis in oral lichen planus,” Oral Diseases, vol. 15, no. 2, pp. 162–169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  176. R. Rosati, M. R. Adil, M. A. Ali et al., “Induction of apoptosis by a short-chain neuropeptide analog in small cell lung cancer,” Peptides, vol. 19, no. 9, pp. 1519–1523, 1998. View at Publisher · View at Google Scholar · View at Scopus
  177. C. Mayordomo, S. García-Recio, E. Ametller et al., “Targeting of Substance P induces cancer cell death and decreases the steady state of EGFR and Her2,” Journal of Cellular Physiology. In press. View at Publisher · View at Google Scholar
  178. F. Esteban, M. A. Gonzalez-Moles, D. Castro et al., “Expression of substance P and neurokinin-1-receptor in laryngeal cancer: linking chronic inflammation to cancer promotion and progression,” Histopathology, vol. 54, no. 2, pp. 258–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  179. A. Tarkkanen, T. Tervo, K. Tervo et al., “Substance P immunoreactivity in normal human retina and in retinoblastoma,” Ophthalmic Research, vol. 15, no. 6, pp. 300–306, 1983. View at Google Scholar · View at Scopus
  180. V. K. Khare, A. P. Albino, and J. A. Reed, “The neuropeptide/mast cell secretagogue substance P is expressed in cutaneous melanocytic lesions,” Journal of Cutaneous Pathology, vol. 25, no. 1, pp. 2–10, 1998. View at Publisher · View at Google Scholar · View at Scopus
  181. C. M. Lee, W. Kum, C. S. Cockram, R. Teoh, and J. D. Young, “Functional substance P receptors on a human astrocytoma cell line (U-373 MG),” Brain Research, vol. 488, no. 1, pp. 328–331, 1989. View at Google Scholar · View at Scopus
  182. M. Bigioni, A. Benzo, C. Irrissuto, C. A. Maggi, and C. Goso, “Role of NK-1 and NK-2 tachykinin receptor antagonism on the growth of human breast carcinoma cell line MDA-MB-231,” Anti-Cancer Drugs, vol. 16, no. 10, pp. 1083–1089, 2005. View at Publisher · View at Google Scholar · View at Scopus
  183. S. Prasad, A. Mathur, M. Jaggi, A. T. Singh, and R. Mukherjee, “Substance P analogs containing α,α-dialkylated amino acids with potent anticancer activity,” Journal of Peptide Science, vol. 13, no. 8, pp. 544–548, 2007. View at Publisher · View at Google Scholar
  184. H. J. Patel, S. H. Ramkissoon, P. S. Patel, and P. Rameshwar, “Transformation of breast cells by truncated neurokinin-1 receptor is secondary to activation by preprotachykinin-A peptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17436–17441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  185. S. Guha, G. Eibl, K. Kisfalvi et al., “Broad-spectrum G protein-coupled receptor antagonist, [D-Arg1, D-Trp5,7,9,Leu11]SP: a dual inhibitor of growth and angiogenesis in pancreatic cancer,” Cancer Research, vol. 65, no. 7, pp. 2738–2745, 2005. View at Publisher · View at Google Scholar · View at Scopus
  186. E. Bospene, Eye Cancer Research Progress, Nova Science Publishers, Huntington, NY, USA, 2008.
  187. P. McDonald, Identification of Novel Potential Cancer Therapies by Synthetic Lethal Screening, University of Pittsburgh, 2008.
  188. L. Cubeddu, “Efectos de los Antagonistas de los Receptores NK-1 y de la Dexametasona sobre la inflamación neurogénica inducida por ciclofosfamida y por radiación X, …,,” AVFT, vol. 23, no. 1, 2004. View at Google Scholar
  189. A. B. Alfieri and L. X. Cubeddu, “Nitric oxide and NK-1-tachykinin receptors in cyclophosphamide-induced cystitis, in rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 295, no. 2, pp. 824–829, 2000. View at Google Scholar · View at Scopus
  190. P. Diemunsch and L. Grelot, “Potential of substance P antagonists as antiemetics,” Drugs, vol. 60, no. 3, pp. 533–546, 2000. View at Google Scholar · View at Scopus
  191. C. Bountra, K. Bunce, T. Dale et al., “Anti-emetic profile of a non-peptide neurokinin NK-1 receptor antagonist, CP-99,994, in ferrets,” European Journal of Pharmacology, vol. 249, no. 1, pp. R3–R4, 1993. View at Publisher · View at Google Scholar · View at Scopus
  192. A. V. Yang, Brain Cancer Therapy and Surgical Interventions, Nova Biomedical, 2006.
  193. T. Hökfelt, T. Bartfai, and F. Bloom, “Neuropeptides: opportunities for drug discovery,” Lancet Neurology, vol. 2, no. 8, pp. 463–472, 2003. View at Publisher · View at Google Scholar · View at Scopus
  194. C. Palma, F. Nardelli, S. Manzini, and C. A. Maggi, “Substance P activates responses correlated with tumour growth in human glioma cell lines bearing tachykinin NK-1 receptors,” British Journal of Cancer, vol. 79, no. 2, pp. 236–243, 1999. View at Google Scholar · View at Scopus
  195. J. Nilsson, A. M. Von Euler, and C. J. Dalsgaard, “Stimulation of connective tissue cell growth by substance P and substance K,” Nature, vol. 315, no. 6014, pp. 61–63, 1985. View at Google Scholar · View at Scopus
  196. T. R. Sharif, W. Luo, and M. Sharif, “Functional expression of bombesin receptor in most adult and pediatric human glioblastoma cell lines; Role in mitogenesis and in stimulating the mitogen-activated protein kinase pathway,” Molecular and Cellular Endocrinology, vol. 130, no. 1, pp. 119–130, 1997. View at Publisher · View at Google Scholar · View at Scopus
  197. M. Schlee, V. Hornung, and G. Hartmann, “siRNA and isRNA: two edges of one sword,” Molecular Therapy, vol. 14, no. 4, pp. 463–470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  198. H. Poeck, R. Besch, C. Maihoefer et al., “5′-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma,” Nature Medicine, vol. 14, no. 11, pp. 1256–1263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  199. L. Quartara, M. Altamura, S. Evangelista, and C. A. Maggi, “Tachykinin receptor antagonists in clinical trials,” Expert Opinion on Investigational Drugs, vol. 18, no. 12, pp. 1843–1864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  200. F. Fleischer and K. Nieber, “Neurokinin 1 receptor antagonists—between hope and disappointment,” Medizinische Monatsschrift für Pharmazeuten, vol. 29, no. 6, pp. 200–205, 2006. View at Google Scholar · View at Scopus
  201. B. Czéh, E. Fuchs, and M. Simon, “NK-1 receptor antagonists under investigation for the treatment of affective disorders,” Expert Opinion on Investigational Drugs, vol. 15, no. 5, pp. 479–486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  202. I. Herpfer and K. Lieb, “Substance P and Substance P receptor antagonists in the pathogenesis and treatment of affective disorders,” The World Journal of Biological Psychiatry, vol. 4, no. 2, pp. 56–63, 2003. View at Google Scholar · View at Scopus
  203. I. Herpfer and K. Lieb, “Substance P receptor antagonists in psychiatry: rationale for development and therapeutic potential,” CNS Drugs, vol. 19, no. 4, pp. 275–293, 2005. View at Publisher · View at Google Scholar · View at Scopus