Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 413196, 8 pages
http://dx.doi.org/10.1100/2012/413196
Research Article

Effect of Potent Ethyl Acetate Fraction of Stereospermum suaveolens Extract in Streptozotocin-Induced Diabetic Rats

1Department of Pharmaceutical Chemistry, Bharathi College of Pharmacy, Bharathi Nagara, Mandya, Karnataka-571 422, India
2Division of Pharmacology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700 032, India

Received 21 October 2011; Accepted 28 December 2011

Academic Editor: Peder Madsen

Copyright © 2012 T. Balasubramanian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. T. Devlin, Text Book of Biochemistry, Wileyliss Inc., New York, NY, USA, 4th edition, 1997.
  2. J. K. Grover, S. Yadav, and V. Vats, “Medicinal plants of India with anti-diabetic potential,” Journal of Ethnopharmacology, vol. 81, no. 1, pp. 81–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. Anonymous, The Wealth of India. Raw Materials, CSIR, New Delhi, India, 1976.
  4. K. R. Kirtikar and B. D. Basu, Indian Medicinal Plants, International Book Distributors, Dehradun, India, 1988.
  5. R. N. Chopra, S. L. Nayar, and I. C. Chopra, Glossary of Indian Medicinal Plants, National Institute of Science Communication, CSIR, New Delhi, India, 1999.
  6. A. G. Ramachandran and S. Mohandoss, “6-O-β-D-Glucosylscutellarein-A rare Flavone glycoside from Stereospermum suaveolens,” Journal of Indian Chemical Society, vol. 65, pp. 150–189, 1988. View at Google Scholar
  7. K. C. Joshi, R. K. Bansal, and R. Patni, “Chemical examination of the roots of Stereospermum suaveolens DC,” Journal of the Indian Chemical Society, vol. 54, no. 6, pp. 648–649, 1977. View at Google Scholar · View at Scopus
  8. M. R. Haque, K. M. Rahman, B. Begum, C. M. Hasan, and M. A. Rashid, “Secondary metabolites from Stereospermum chelonoides,” Dhaka University Journal of Pharmaceutical Sciences, vol. 4, pp. 61–64, 2005. View at Google Scholar
  9. M. R. Haque, K. M. Rahman, M. N. Iskander, C. M. Hasan, and M. A. Rashid, “Stereochenols A and B, two quinones from Stereospermum chelonoides,” Phytochemistry, vol. 67, no. 24, pp. 2663–2665, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Subramanian S. Sankara, S. Nagarajan, and N. Sulochana, “Flavonoids of the leaves of Stereospermum suaveolens,” Current Science, vol. 41, pp. 102–103, 1972. View at Google Scholar
  11. A. Ghani, Medicinal Plants of Bangladesh. Chemical Constituents and Uses, Asiatic Society of Bangladesh, Dhaka, Bangladesh, 1st edition, 1998.
  12. T. Balasubramanian, M. S. Lal, M. Sarkar, and T. K. Chatterjee, “Antihyperglycemic and antioxidant activities of medicinal plant Stereospermum suaveolens in streptozotocin-induced diabetic rats,” Journal of Dietary Supplements, vol. 6, no. 3, pp. 227–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. J. Ecobichon, The Basis of Toxicology Testing, CRC Press, New York, NY, USA, 1997.
  14. O. Siddiqui, Y. Sun, J.-C. Liu, and Y. W. Chien, “Facilitated transdermal transport of insulin,” Journal of Pharmaceutical Sciences, vol. 76, no. 4, pp. 341–345, 1987. View at Google Scholar
  15. H. M. Mukhtar, S. H. Ansari, Z. A. Bhat, and T. Naved, “Antihyperglycemic activity of Cyamopsis tetragonoloba beans on blood glucose levels in alloxan-induced diabetic rats,” Pharmaceutical Biology, vol. 44, no. 1, pp. 10–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. N. Nagappa, P. A. Thakurdesai, N. V. Rao, and J. Singh, “Antidiabetic activity of Terminalia catappa Linn fruits,” Journal of Ethnopharmacology, vol. 88, no. 1, pp. 45–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. L. M. Kanai, Medical Laboratory Technology, vol. 3, Tata McGraw-Hill Publishing Company, New Delhi, India, 1998.
  18. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Google Scholar · View at Scopus
  19. G. L. Ellman, “Tissue sulphydryl groups,” Archives of Biochemistry and Biophysics, vol. 82, pp. 70–77, 1959. View at Google Scholar
  20. P. Kakkar, B. Das, and P. N. Viswanathan, “A modified spectrophotometric assay of superoxide dismutase,” Indian Journal of Biochemistry and Biophysics, vol. 21, no. 2, pp. 130–132, 1984. View at Google Scholar · View at Scopus
  21. H. Aebi, “Catalase,” in Methods in Enzymatic Analysis, H. U. Bergmeyer, Ed., vol. 2, pp. 674–684, Academic Press, New York, NY, USA, 1974. View at Google Scholar
  22. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–272, 1951. View at Google Scholar · View at Scopus
  23. M. A Sperling and P. A. Saunders, “Diabetes mellitus,” in Nelson Text Book of Pediatrics, R. E. Behman, R. M. Kliegman, and H. B. Jenson, Eds., pp. 1767–1791, 2000. View at Google Scholar
  24. D. Ghosh, T. K. Bera, K. Chatterjee, K. M. Ali, and D. De, “Antidiabetic and antioxidant effects of aqueous extract of seed of Psoralea corylifolia and seed of Trigonella foenum-graecum L (Methi) in separate and composite in manner in streptozotocin induced diabetic mice,” International Journal of Pharma Research and Development, vol. 7, pp. 1–10, 2009. View at Google Scholar
  25. H. Beppu, K. Shimpo, T. Chihara et al., “Antidiabetic effects of dietary administration of Aloe arborescens Miller components on multiple low-dose streptozotocin-induced diabetes in mice: investigation on hypoglycemic action and systemic absorption dynamics of aloe components,” Journal of Ethnopharmacology, vol. 103, no. 3, pp. 468–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Maiti, D. Jana, U. K. Das, and D. Ghosh, “Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats,” Journal of Ethnopharmacology, vol. 92, no. 1, pp. 85–91, 2004. View at Publisher · View at Google Scholar
  27. A. Shirwaikar, K. Rajendran, and C. D. Kumar, “Oral antidiabetic activity of Annona squamosa leaf alcohol extract in NIDDM rats,” Pharmaceutical Biology, vol. 42, no. 1, pp. 30–35, 2004. View at Publisher · View at Google Scholar
  28. S. Goldstein, A. Simpson, and P. Saenger, “Hepatic drug metabolism is increased in poorly controlled insulin-dependent diabetes mellitus,” Acta Endocrinologica, vol. 123, no. 5, pp. 550–556, 1990. View at Google Scholar · View at Scopus
  29. M. Bollen and W. Stalmans, “The hepatic defect in glycogen synthesis in chronic diabetes involves the G-component of synthase phosphatase,” Biochemical Journal, vol. 217, no. 2, pp. 427–434, 1984. View at Google Scholar
  30. B. Chen, M. Zhu, W. X. Xing, G. J. Yang, H. M. Mi, and Y. T. Wu, “Studies on chemical constituents in fruit of Eucalyptus globulus,” China Journal of Chinese Materia Medica, vol. 27, no. 8, pp. 596–597, 2002. View at Google Scholar · View at Scopus
  31. T. Hayashi, H. Maruyama, R. Kasai et al., “Ellagitannins from Lagerstroemia speciosa as activators of glucose transport in fat cells,” Planta Medica, vol. 68, no. 2, pp. 173–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. M. Kesavulu, B. K. Rao, R. Giri, J. Vijaya, G. Subramanyam, and C. Apparao, “Lipid peroxidation and antioxidant enzyme status in Type 2 diabetics with coronary heart disease,” Diabetes Research and Clinical Practice, vol. 53, no. 1, pp. 33–39, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Aydin, H. Orhan, A. Sayal, M. Ozata, G. Sahin, and A. Isumer, “Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control,” Clinical Biochemistry, vol. 34, no. 1, pp. 65–70, 2001. View at Publisher · View at Google Scholar
  34. K. Kedziora-Kornatowska, S. Szram, T. Kornatowski, L. Szadujkis-Szadurski, J. Kȩdziora, and G. Bartosz, “The effect of verapamil on the antioxidant defence system in diabetic kidney,” Clinica Chimica Acta, vol. 322, no. 1-2, pp. 105–112, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra, “Selenium: biochemical role as a component of glatathione peroxidase,” Science, vol. 179, no. 4073, pp. 588–590, 1973. View at Google Scholar · View at Scopus
  36. B. Matcovis, S. I. Varga, L. Szaluo, and H. Witsas, “The effect of diabetes on the activities of the peroxide metabolic enzymes,” Hormone and Metabolic Research, vol. 14, pp. 77–79, 1982. View at Google Scholar
  37. B. P. Yu, “Cellular defenses against damage from reactive oxygen species,” Physiological Reviews, vol. 74, no. 1, pp. 139–162, 1994. View at Google Scholar · View at Scopus
  38. A. D. Bolzán and M. S. Bianchi, “Genotoxicity of Streptozotocin,” Mutation Research, vol. 512, no. 2-3, pp. 121–134, 2002. View at Google Scholar · View at Scopus
  39. M. Aragno, E. Brignardello, E. Tamagno, V. Gatto, O. Danni, and G. Boccuzzi, “Dehydroepiandrosterone administration prevents the oxidative damage induced by acute hyperglycemia in rats,” Journal of Endocrinology, vol. 155, no. 2, pp. 233–240, 1997. View at Publisher · View at Google Scholar