Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 418946, 15 pages
http://dx.doi.org/10.1100/2012/418946
Research Article

A Bat Algorithm with Mutation for UCAV Path Planning

1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2Graduate School of Chinese Academy of Sciences, Beijing 100039, China
3School of Computer Science and Information Technology, Northeast Normal University, Changchun 130117, China

Received 9 October 2012; Accepted 20 November 2012

Academic Editors: E. Acar and I.-S. Jeung

Copyright © 2012 Gaige Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. B. Duan, X. Y. Zhang, and C. F. Xu, Bio-Inspired Computing, Science Press, Beijing, China, 2011.
  2. G. Wang, L. Guo, H. Duan, L. Liu, H. Wang, and M. Shao, “Path planning for uninhabited combat aerial vehicle using hybrid meta-heuristic DE/BBO algorithm,” Advanced Science, Engineering and Medicine, vol. 4, no. 6, pp. 550–564, 2012. View at Google Scholar
  3. G. Wang, L. Guo, H. Duan, L. Liu, H. Wang, and M. Shao, “Hybridizing harmony search with biogeography based optimization for global numerical optimization,” Journal of Computational and Theoretical Nanoscience. In press.
  4. Y. V. Pehlivanoglu, “A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV,” Aerospace Science and Technology, vol. 16, pp. 47–55, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Ye, D. W. Ma, and H. D. Fan, “Algorithm for low altitude penetration aircraft path planning with improved ant colony algorithm,” Chinese Journal of Aeronautics, vol. 18, no. 4, pp. 304–309, 2005. View at Google Scholar · View at Scopus
  6. H. Duan, Y. Yu, X. Zhang, and S. Shao, “Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm,” Simulation Modelling Practice and Theory, vol. 18, no. 8, pp. 1104–1115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. B. Duan, X. Y. Zhang, J. Wu, and G. J. Ma, “Max-min adaptive ant colony optimization approach to multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments,” Journal of Bionic Engineering, vol. 6, no. 2, pp. 161–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Wang, L. Guo, H. Duan, L. Liu, H. Wang, and B. Wang, “A hybrid meta-heuristic DE/CS algorithm for UCAV path planning,” Journal of Information and Computational Science, vol. 5, no. 16, pp. 4811–4818, 2012. View at Google Scholar
  9. G. Wang, L. Guo, H. Duan, H. Wang, L. Liu, and M. Shao, “A hybrid meta-heuristic DE/CS algorithm for UCAV three-dimension path planning,” The Scientific World Journal, vol. 2012, Article ID 583973, 11 pages, 2012. View at Publisher · View at Google Scholar
  10. C. Xu, H. Duan, and F. Liu, “Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning,” Aerospace Science and Technology, vol. 14, no. 8, pp. 535–541, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Wang, L. Guo, H. Duan, L. Liu, and H. Wang, “A modified firefly algorithm for UCAV path planning,” International Journal of Hybrid Information Technology, vol. 5, no. 3, pp. 123–144, 2012. View at Google Scholar
  12. A. H. Gandomi, X. S. Yang, S. Talatahari, and A. H. Alavi, “Firefly algorithm with chaos,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 1, pp. 89–98, 2013. View at Google Scholar
  13. H. Duan, S. Liu, and J. Wu, “Novel intelligent water drops optimization approach to single UCAV smooth trajectory planning,” Aerospace Science and Technology, vol. 13, no. 8, pp. 442–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. View at Google Scholar · View at Scopus
  15. X. S. Yang, “A new metaheuristic Bat-inspired Algorithm,” Studies in Computational Intelligence, vol. 284, pp. 65–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Ye and H. D. Fan, “Research on mission planning system key techniques of UCAV,” Journal of Naval Aeronautical Engineering Institute, vol. 22, no. 2, pp. 201–207, 2007. View at Google Scholar
  17. X. S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, Frome, UK, 2nd edition, 2011.
  18. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, Perth, Australia, December 1995. View at Scopus
  19. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983. View at Google Scholar · View at Scopus
  20. M. Dorigo and T. Stutzle, Ant Colony Optimization, MIT Press, Cambridge, UK, 2004.
  21. D. Simon, “Biogeography-based optimization,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 6, pp. 702–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Wang, L. Guo, H. Duan, L. Liu, and H. Wang, “Dynamic deployment of wireless sensor networks by biogeography based optimization algorithm,” Journal of Sensor and Actuator Networks, vol. 1, no. 2, pp. 86–96, 2012. View at Google Scholar
  23. H. Duan, W. Zhao, G. Wang, and X. Feng, “Test-sheet composition using analytic hierarchy process and hybrid metaheuristic algorithm TS/BBO,” Mathematical Problems in Engineering, vol. 2012, Article ID 712752, 22 pages, 2012. View at Publisher · View at Google Scholar
  24. H. Beyer, The Theory of Evolution Strategies, Springer, New York, NY, USA, 2001.
  25. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine learning, Addison-Wesley, New York, NY, USA, 1998.
  26. B. Shumeet, “Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning,” Tech. Rep. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, Pa, USA, 1994. View at Google Scholar
  27. A. H. Gandomi, G. J. Yun, X.-S. Yang, and S. Talatahari, “Chaos-enhanced accelerated particle swarm optimization,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 2, pp. 327–340, 2013. View at Google Scholar
  28. W. Khatib and P. Fleming, “The stud GA: a mini revolution?” in Proceedings of the 8th International Conference on Parallel Problem Solving from Nature, vol. 1498, pp. 683–691, 1998.
  29. G. Wang, L. Guo, A. H. Gandomi et al., “Lévy-flight krill herd algorithm,” Mathematical Problems in Engineering. In press.