Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 474801, 10 pages
http://dx.doi.org/10.1100/2012/474801
Research Article

Effects of 1-Methylcyclopropene and Modified Atmosphere Packaging on the Antioxidant Capacity in Pepper “Kulai” during Low-Temperature Storage

1School of Bioscience and Biotechnology, National University of Malaysia, Selangor, 43600 Bangi, Malaysia
2Institute of System Biology (INBIOSIS), National University of Malaysia, Selangor, 43600 Bangi, Malaysia

Received 26 March 2012; Accepted 18 April 2012

Academic Editors: J. E. Barboza-Corona, A. Mentese, and D. M. Prazeres

Copyright © 2012 Chung Keat Tan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. R. Howard, S. T. Talcott, C. H. Brenes, and B. Villalon, “Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity,” Journal of Agricultural and Food Chemistry, vol. 48, no. 5, pp. 1713–1720, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Ou, D. Huang, M. Hampsch-Woodill, J. A. Flanagan, and E. K. Deemer, “Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study,” Journal of Agricultural and Food Chemistry, vol. 50, no. 11, pp. 3122–3128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. P. M. Bramley, “Is lycopene beneficial to human health?” Phytochemistry, vol. 54, no. 3, pp. 233–236, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Qian and V. Nihorimbere, “Antioxidant power of phytochemicals from Psidium guajava leaf,” Journal of Zhejiang University, vol. 5, no. 6, pp. 676–683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. J. Otten, J. P. Hellwig, and L. D. Meyers, Diatery References Intakes: The Essential Guide to Nutrient Requriments, The National Academies Press, Washington, DC, USA, 2006.
  6. B. H. J. Bielski, H. W. Richter, and P. C. Chan, “Some properties of the ascorbate free radical,” Annals of the New York Academy of Sciences, vol. 258, pp. 231–237, 1975. View at Google Scholar · View at Scopus
  7. J. R. Harris, Subcellular Biochemistry, Ascorbic Acid: Biochemistry and Biomedical Cell Biology, Plenum, New York, NY, USA, 1996.
  8. A. Pompella, A. Visvikis, A. Paolicchi, V. De Tata, and A. F. Casini, “The changing faces of glutathione, a cellular protagonist,” Biochemical Pharmacology, vol. 66, no. 8, pp. 1499–1503, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. J. Polderdijk, H. A. M. Boerrigter, E. C. Wilkinson, J. G. Meijer, and M. F. M. Janssens, “The effects of controlled atmosphere storage at varying levels of relative humidity on weight loss, softening and decay of red bell peppers,” Scientia Horticulturae, vol. 55, no. 3-4, pp. 315–321, 1993. View at Google Scholar · View at Scopus
  10. R. E. Hardenburg, A. E. Watada, and C. Y. Wong, “The commercial storage of fruits, vegetables, and florist and nursery stocks,” USDA Agriculture Handbooks, vol. 66, pp. 130–142, 1986. View at Google Scholar
  11. R. E. Paull, “Chilling injury of crops of tropical and subtropical origin,” in Chilling Injury of Horticultural Crops, C. Y. Wang, Ed., CRC Press, Boca Raton, Fla, USA, 1990. View at Google Scholar
  12. K. S. Lee, K. L. Woo, and D. S. Lee, “Modified atmosphere packaging for green chili peppers,” Packaging Technology and Science, vol. 7, no. 1, pp. 51–58, 1994. View at Google Scholar · View at Scopus
  13. E. C. Sisler, T. Alwan, R. Goren, M. Serek, and A. Apelbaum, “1-Substituted cyclopropenes: effective blocking agents for ethylene action in plants,” Plant Growth Regulation, vol. 40, no. 3, pp. 223–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Bassetto, A. P. Jacomino, A. L. Pinheiro, and R. A. Kluge, “Delay of ripening of “Pedro Sato” guava with 1-methylcyclopropene,” Postharvest Biology and Technology, vol. 35, no. 3, pp. 303–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. L. Chae, M. K. Seong, L. C. Jeoung, K. C. Gross, and A. B. Woolf, “Bell pepper (Capsicum annuum L.) fruits are susceptible to chilling injury at the breaker stage of ripeness,” HortScience, vol. 42, no. 7, pp. 1659–1664, 2007. View at Google Scholar · View at Scopus
  16. A. Manenoi, E. R. V. Bayogan, S. Thumdee, and R. E. Paull, “Utility of 1-methylcyclopropene as a papaya postharvest treatment,” Postharvest Biology and Technology, vol. 44, no. 1, pp. 55–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. S. Ilić, R. Trajković, Y. Perzelan, S. Alkalai-Tuvia, and E. Fallik, “Influence of 1-methylcyclopropene (1-MCP) on postharvest storage quality in green bell pepper fruit,” Food and Bioprocess Technology, 2011. View at Publisher · View at Google Scholar
  18. V. L. Singleton and J. A. Rossi, “Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents,” American Journal of Enology and Viticulture, vol. 16, pp. 144–158, 1965. View at Google Scholar
  19. Y. Y. Lim, T. T. Lim, and J. J. Tee, “Antioxidant properties of several tropical fruits: a comparative study,” Food Chemistry, vol. 103, no. 3, pp. 1003–1008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. E. Anderson, “Determination of glutathione and glutathione disulfide in biological samples,” Methods in Enzymology, vol. 113, pp. 548–555, 1985. View at Google Scholar · View at Scopus
  21. Y. Nakano and K. Asada, “Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts,” Plant and Cell Physiology, vol. 22, no. 5, pp. 867–880, 1981. View at Google Scholar · View at Scopus
  22. R. F. Beers Jr. and I. W. Sizer, “A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase,” The Journal of Biological Chemistry, vol. 195, no. 1, pp. 133–140, 1952. View at Google Scholar · View at Scopus
  23. H. U. Bergmeyer, Methods of Enzymatic Analysis, VCH, Weinheim, Germany, 3rd edition, 1987.
  24. K. W. Lee, Y. J. Kim, D. O. Kim, H. J. Lee, and C. Y. Lee, “Major phenolics in apple and their contribution to the total antioxidant capacity,” Journal of Agricultural and Food Chemistry, vol. 51, no. 22, pp. 6516–6520, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Materska and I. Perucka, “Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.),” Journal of Agricultural and Food Chemistry, vol. 53, no. 5, pp. 1750–1756, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. F. Chu, J. Sun, X. Wu, and R. H. Liu, “Antioxidant and antiproliferative activities of common vegetables,” Journal of Agricultural and Food Chemistry, vol. 50, no. 23, pp. 6910–6916, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. T. Lafuente, M. A. Martinez-Téllez, G. González-Aguilar et al., “Physiological and biochemical responses associated with chilling sensitivity of “Fortune” mandarins and temperature conditioning,” CIHEM-Options Mediterraneennes, vol. 1, pp. 125–134, 1995. View at Google Scholar
  28. J. D. Faragher and D. J. Chalmers, “Regulation of anthocyanin synthesis in apple skin. III. Involvement of phenylalanine ammonia-lyase,” Australian Journal of Plant Physiology, vol. 4, pp. 133–141, 1977. View at Google Scholar
  29. A. Podsedek, “Natural antioxidants and antioxidant capacity of Brassica vegetables: a review,” LWT - Food Science and Technology, vol. 40, no. 1, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. I. M. C. M. Rietjens, M. G. Boersma, L. D. Haan et al., “The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids,” Environmental Toxicology and Pharmacology, vol. 11, no. 3-4, pp. 321–333, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Mozafar, Plant Vitamins: Agronomic, Physiological and Nutritional Aspects, CRC Press, Boca Raton, Fla, USA, 1994.
  32. S. K. Lee and A. A. Kader, “Preharvest and postharvest factors influencing vitamin C content of horticultural crops,” Postharvest Biology and Technology, vol. 20, no. 3, pp. 207–220, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Kalt, “Effects of production and processing factors on major fruit and vegetable antioxidants,” Journal of Food Science, vol. 70, no. 1, pp. R11–R19, 2005. View at Google Scholar · View at Scopus
  34. T. O. Win, V. Srilaong, J. Heyes, K. L. Kyu, and S. Kanlayanarat, “Effects of different concentrations of 1-MCP on the yellowing of West Indian lime (Citrus aurantifolia, Swingle) fruit,” Postharvest Biology and Technology, vol. 42, no. 1, pp. 23–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Tanaka, T. Sano, K. Ishizuka, K. Kitta, and Y. Kawamura, “Comparison of properties of leaf and root glutathione reductases from spinach,” Physiologia Plantarum, vol. 91, no. 3, pp. 353–358, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Rennenberg, “Glutathione metabolism and possible biological roles in higher plants,” Phytochemistry, vol. 21, no. 12, pp. 2771–2781, 1980. View at Google Scholar · View at Scopus
  37. G. Kocsy, G. Szalai, A. Vágújfalvi, L. Stéhli, G. Orosz, and G. Galiba, “Genetic study of glutathione accumulation during cold hardening in wheat,” Planta, vol. 210, no. 2, pp. 295–301, 2000. View at Google Scholar · View at Scopus
  38. M. A. Walker and B. D. McKersie, “Role of the ascorbateglutathione antioxidant system in chilling resistance of tomato,” Journal of Plant Physiology, vol. 141, pp. 234–239, 1993. View at Google Scholar
  39. W. Dröge and R. Breitkreutz, “Glutathione and immune function,” Proceedings of the Nutrition Society, vol. 59, no. 4, pp. 595–600, 2000. View at Google Scholar · View at Scopus
  40. C. H. Foyer, P. Descourvie'res, and K. J. Kunert, “Protection against oxygen radicals: an important defence mechanism studied in transgenic plants,” Plant, Cell and Environment, vol. 17, pp. 507–523, 1994. View at Google Scholar
  41. H. Saruyama and M. Tanida, “Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice (Oryza sativa L.),” Plant Science, vol. 109, no. 2, pp. 105–113, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Singh and U. N. Dwivedi, “Effect of ethrel and 1-methylcyclopropene (1-MCP) on antioxidants in mango (Mangifera indica var. Dashehari) during fruit ripening,” Food Chemistry, vol. 111, no. 4, pp. 951–956, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. P. E. Gamble and J. J. Burke, “Effect of water stress on the chloroplast antioxidant system. Alterations in glutathione reductase activity,” Plant Physiology, vol. 76, pp. 615–621, 1984. View at Google Scholar
  44. M. K. Eduardo, M. O. Derrick, and L. S. John, “Effect of 1-MCP on antioxidants, enzymes, membrane leakage, and protein content of drought-stressed cotton plants,” Summaries of Arkansas Cotton Research, pp. 102–107, 2007. View at Google Scholar
  45. C. Bowler, M. Van Montagu, and D. Inzé, “Superoxide dismutase and stress tolerance,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 43, no. 1, pp. 83–116, 1992. View at Google Scholar · View at Scopus
  46. H. Willekens, D. Inze, M. Van Montagu, and W. Van Camp, “Catalases in plants,” Molecular Breeding, vol. 1, no. 3, pp. 207–228, 1995. View at Google Scholar · View at Scopus
  47. J. Kan, J. Che, H. Y. Xie, and C. H. Jin, “Effect of 1-methylcyclopropene on postharvest physiological changes of “Zaohong” plum,” Acta Physiologiae Plantarum, vol. 12, pp. 56–67, 2010. View at Publisher · View at Google Scholar · View at Scopus