Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 489830, 12 pages
Review Article

Genetics and Epigenetics of Parkinson's Disease

1Faculty of Medicine, University of Pisa, 56126 Pisa, Italy
2Genetics and Epigenetics of Complex Disease Program, Department of Neuroscience (DAI Neuroscience), Pisa University Hospital, Via S. Giuseppe 22, 56126 Pisa, Italy

Received 15 October 2011; Accepted 21 December 2011

Academic Editors: H. Cui and M. Hiltunen

Copyright © 2012 Fabio Coppedè. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In 1997 a mutation in the a-synuclein (SNCA) gene was associated with familial autosomal dominant Parkinson’s disease (PD). Since then, several loci (PARK1-15) and genes have been linked to familial forms of the disease. There is now sufficient evidence that six of the so far identified genes at PARK loci (a-synuclein, leucine-rich repeat kinase 2, parkin, PTEN-induced putative kinase 1, DJ-1, and ATP13A2) cause inherited forms of typical PD or parkinsonian syndromes. Other genes at non-PARK loci (MAPT, SCA1, SCA2, spatacsin, POLG1) cause syndromes with parkinsonism as one of the symptoms. The majority of PD cases are however sporadic “idiopathic” forms, and the recent application of genome-wide screening revealed almost 20 genes that might contribute to disease risk. In addition, increasing evidence suggests that epigenetic mechanisms, such as DNA methylation, histone modifications, and small RNA-mediated mechanisms, could regulate the expression of PD-related genes.