Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 504837, 11 pages
http://dx.doi.org/10.1100/2012/504837
Research Article

The Effects of Whole-Body Vibration on the Cross-Transfer of Strength

Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC 3125, Australia

Received 2 October 2012; Accepted 30 October 2012

Academic Editors: T. Arendt, F. Pilato, and Ü. Tan

Copyright © 2012 Alicia M. Goodwill and Dawson J. Kidgell. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. W. Scripture, T. L. Smith, and E. M. Brown, “On the education of muscular control and power,” Studies From the Yale Psychological Laboratory, vol. 2, pp. 114–119, 1894. View at Google Scholar
  2. F. A. Hellebrandt, “Cross education; ipsilateral and contralateral effects of unimanual training,” Journal of Applied Physiology, vol. 4, no. 2, pp. 136–144, 1951. View at Google Scholar · View at Scopus
  3. T. Hortobágyi, “Cross education and the human central nervous system,” IEEE Engineering in Medicine and Biology Magazine, vol. 24, no. 1, pp. 22–28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Lee, S. C. Gandevia, and T. J. Carroll, “Unilateral strength training increases voluntary activation of the opposite untrained limb,” Clinical Neurophysiology, vol. 120, no. 4, pp. 802–808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. T. J. Carroll, R. D. Herbert, J. Munn, M. Lee, and S. C. Gandevia, “Contralateral effects of unilateral strength training: evidence and possible mechanisms,” Journal of Applied Physiology, vol. 101, no. 5, pp. 1514–1522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Hendy, M. Spittle, and D. J. Kidgell, “Cross education and immobilisation: mechanisms and implications for injury rehabilitation,” Journal of Science and Medicine in Sport, vol. 15, no. 2, pp. 94–101, 2012. View at Google Scholar
  7. D. J. Kidgell, M. A. Stokes, and A. J. Pearce, “Strength training of one limb increases corticomotor excitability projecting to the contralateral homologous limb,” Motor Control, vol. 15, no. 2, pp. 247–266, 2011. View at Google Scholar · View at Scopus
  8. M. Lee, M. R. Hinder, S. C. Gandevia, and T. J. Carroll, “The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice,” Journal of Physiology, vol. 588, no. 1, pp. 201–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Hortobágyi, S. P. Richardson, M. Lomarev et al., “Interhemispheric plasticity in humans,” Medicine & Science in Sports & Exercise, vol. 43, no. 7, pp. 1188–1199, 2011. View at Google Scholar
  10. A. M. Goodwill, A. J. Pearce, and D. J. Kidgell, “Corticomotor plasticity following unilateral strength training,” Muscle & Nerve, vol. 46, no. 3, pp. 384–393, 2012. View at Google Scholar
  11. C. Latella, D. Kidgell, and A. Pearce, “Reduction in corticospinal inhibition in the trained and untrained limb following unilateral leg strength training,” European Journal of Applied Physiology, vol. 112, no. 8, pp. 3097–3107, 2012. View at Google Scholar
  12. M. R. Hinder, M. W. Schmidt, M. I. Garry, and J. J. Summers, “The effect of ballistic thumb contractions on the excitability of the ipsilateral motor cortex,” Experimental Brain Research, vol. 201, no. 2, pp. 229–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Hortobágyi, N. J. Lambert, and J. P. Hill, “Greater cross education following training with muscle lengthening than shortening,” Medicine and Science in Sports and Exercise, vol. 29, no. 1, pp. 107–112, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Farthing and P. D. Chilibeck, “The effect of eccentric training at different velocities on cross-education,” European Journal of Applied Physiology, vol. 89, no. 6, pp. 570–577, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Zhou, “Chronic neural adaptations to unilateral exercise: mechanisms of cross education,” Exercise and Sport Sciences Reviews, vol. 28, no. 4, pp. 177–184, 2000. View at Google Scholar · View at Scopus
  16. S. J. Ackerley, C. M. Stinear, and W. D. Byblow, “Promoting use-dependent plasticity with externally-paced training,” Clinical Neurophysiology, vol. 122, no. 12, pp. 2462–2468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. D. J. Kidgell, M. A. Stokes, T. J. Castricum, and A. J. Pearce, “Neurophysiological responses after short-term strength training of the biceps brachii muscle,” Journal of Strength and Conditioning Research, vol. 24, no. 11, pp. 3123–3132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Munn, R. D. Herbert, and S. C. Gandevia, “Contralateral effects of unilateral resistance training: a meta-analysis,” Journal of Applied Physiology, vol. 96, no. 5, pp. 1861–1866, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Cardinale and J. Wakeling, “Whole body vibration exercise: are vibrations good for you?” British Journal of Sports Medicine, vol. 39, no. 9, pp. 585–589, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. G. Dolny and F. C. G. Reyes, “Whole body vibration exercise: training and benefits,” Current Sports Medicine Reports, vol. 7, no. 3, pp. 152–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. V. B. Issurin, “Vibrations and their applications in sport: a review,” Journal of Sports Medicine and Physical Fitness, vol. 45, no. 3, pp. 324–336, 2005. View at Google Scholar · View at Scopus
  22. D. J. Cochrane, “Vibration exercise: the potential benefits,” International Journal of Sports Medicine, vol. 32, no. 2, pp. 75–99, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Rittweger, “Vibration as an exercise modality: how it may work, and what its potential might be,” European Journal of Applied Physiology, vol. 108, no. 5, pp. 877–904, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. W. J. Armstrong, H. N. Nestle, D. C. Grinnell et al., “The acute effect of whole-body vibration on the hoffman reflex,” Journal of Strength & Conditioning Research, vol. 22, no. 2, pp. 471–476, 2008. View at Google Scholar
  25. C. Bosco, R. Colli, E. Introini et al., “Adaptive responses of human skeletal muscle to vibration exposure,” Clinical Physiology, vol. 19, no. 2, pp. 183–187, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. D. J. Cochrane and S. R. Stannard, “Acute whole body vibration training increases vertical jump and flexibility performance in elite female field hockey players,” British Journal of Sports Medicine, vol. 39, no. 11, pp. 860–865, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. V. B. Issurin, D. G. Liebermann, and G. Tenenbaum, “Effect of vibratory stimulation training on maximal force and flexibility,” Journal of Sports Sciences, vol. 12, no. 6, pp. 561–566, 1994. View at Google Scholar · View at Scopus
  28. C. Bosco, M. Cardinale, O. Tsarpela et al., “The influence of whole body vibration on jumping performance,” Biology of Sport, vol. 15, no. 3, pp. 157–164, 1998. View at Google Scholar · View at Scopus
  29. L. C. Marshall and M. A. Wyon, “The effect of whole-body vibration on jump height and active range of movement in female dancers,” The Journal of Strength & Conditioning Research, vol. 26, no. 3, pp. 789–793, 2012. View at Google Scholar
  30. D. A. Bemben, I. J. Palmer, M. G. Bemben, and A. W. Knehans, “Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism in postmenopausal women,” Bone, vol. 47, no. 3, pp. 650–656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Delecluse, M. Roelants, and S. Verschueren, “Strength increase after whole-body vibration compared with resistance training,” Medicine and Science in Sports and Exercise, vol. 35, no. 6, pp. 1033–1041, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Annino, E. Padua, C. Castagna et al., “Effect of whole body vibration training on lower limb performance in selected high-level ballet students,” Journal of Strength and Conditioning Research, vol. 21, no. 4, pp. 1072–1076, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Fagnani, A. Giombini, A. Di Cesare, F. Pigozzi, and V. Di Salvo, “The effects of a whole-body vibration program on muscle performance and flexibility in female athletes,” American Journal of Physical Medicine and Rehabilitation, vol. 85, no. 12, pp. 956–962, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Osawa and Y. Oguma, “Effects of resistance training with whole-body vibration on muscle fitness in untrained adults,” Scandinavian Journal of Medicine and Science in Sports. In press. View at Publisher · View at Google Scholar
  35. E. Preatoni, A. Colombo, M. Verga et al., “The effects of whole body vibration in isolation or combined with strength training in female athletes,” The Journal of Strength & Conditioning Research, vol. 26, no. 9, pp. 2495–2506, 2012. View at Google Scholar
  36. A. Weier and D. J. Kidgell, “Strength training with superimposed whole body vibration does not preferentially modulate cortical plasticity,” The Scientific World Journal, vol. 2012, Article ID 876328, 9 pages, 2012. View at Publisher · View at Google Scholar
  37. R. G. Carson, A. E. Popple, S. M. P. Verschueren, and S. Riek, “Superimposed vibration confers no additional benefit compared with resistance training alone,” Scandinavian Journal of Medicine and Science in Sports, vol. 20, no. 6, pp. 827–833, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. B. R. Rønnestad, “Comparing the performance-enhancing effects of squats on a vibration platform with conventional squats in recreationally resistance-trained men,” Journal of Strength and Conditioning Research, vol. 18, no. 4, pp. 839–845, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Fernandez-Rio, N. Terrados, B. Fernandez-Garcia, and O. E. Suman, “Effects of vibration training on force production in female basketball players,” Journal of Strength and Conditioning Research, vol. 24, no. 5, pp. 1373–1380, 2010. View at Google Scholar · View at Scopus
  40. T. Kvorning, M. Bagger, P. Caserotti, and K. Madsen, “Effects of vibration and resistance training on neuromuscular and hormonal measures,” European Journal of Applied Physiology, vol. 96, no. 5, pp. 615–625, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. T. Jones, B. M. Parker, and N. Cortes, “The effect of whole-body vibration training and conventional strength training on performance measures in female athletes,” The Journal of Strength & Conditioning Research, vol. 25, no. 9, pp. 2434–2441, 2011. View at Google Scholar
  42. E. G. Artero, J. C. Espada-Fuentes, J. Argüelles-Cienfuegos, A. Román, P. J. Gómez-López, and A. Gutiérrez, “Effects of whole-body vibration and resistance training on knee extensors muscular performance,” European Journal of Applied Physiology, vol. 112, no. 4, pp. 1371–1378, 2012. View at Google Scholar
  43. K. Rosenkranz and J. C. Rothwell, “Differential effect of muscle vibration on intracortical inhibitory circuits in humans,” Journal of Physiology, vol. 551, part 2, pp. 649–660, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. J. M. Wakeling, B. M. Nigg, and A. I. Rozitis, “Muscle activity damps the soft tissue resonance that occurs in response to pulsed and continuous vibrations,” Journal of Applied Physiology, vol. 93, no. 3, pp. 1093–1103, 2002. View at Google Scholar · View at Scopus
  45. J. M. Wakeling and B. M. Nigg, “Modification of soft tissue vibrations in the leg by muscular activity,” Journal of Applied Physiology, vol. 90, no. 2, pp. 412–420, 2001. View at Google Scholar · View at Scopus
  46. K. A. Boyer and B. M. Nigg, “Changes in muscle activity in response to different impact forces affect soft tissue compartment mechanical properties,” Journal of Biomechanical Engineering, vol. 129, no. 4, pp. 594–602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. K. N. Mileva, A. A. Naleem, S. K. Biswas, S. Marwood, and J. L. Bowtell, “Acute effects of a vibration-like stimulus during knee extension exercise,” Medicine and Science in Sports and Exercise, vol. 38, no. 7, pp. 1317–1328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. R. D. Pollock, R. C. Woledge, F. C. Martin, and D. J. Newham, “Effects of whole body vibration on motor unit recruitment and threshold,” Journal of Applied Physiology, vol. 112, no. 3, pp. 388–395, 2012. View at Google Scholar
  49. M. Shinohara, C. T. Moritz, M. A. Pascoe, and R. M. Enoka, “Prolonged muscle vibration increases stretch reflex amplitude, motor unit discharge rate, and force fluctuations in a hand muscle,” Journal of Applied Physiology, vol. 99, no. 5, pp. 1835–1842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Shinohara, “Effects of prolonged vibration on motor unit activity and motor performance,” Medicine and Science in Sports and Exercise, vol. 37, no. 12, pp. 2120–2125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Burke, K. E. Hagbarth, L. Lofstedt, and B. G. Wallin, “The responses of human muscle spindle endings to vibration during isometric contraction,” Journal of Physiology, vol. 261, no. 3, pp. 695–711, 1976. View at Google Scholar · View at Scopus
  52. D. Burke and H. H. Schiller, “Discharge pattern of single motor units in the tonic vibration reflex of human triceps surae,” Journal of Neurology Neurosurgery and Psychiatry, vol. 39, no. 8, pp. 729–741, 1976. View at Google Scholar · View at Scopus
  53. K. N. Mileva, J. L. Bowtell, and A. R. Kossev, “Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men,” Experimental Physiology, vol. 94, no. 1, pp. 103–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. A. J. Pearce, A. M. Hendy, W. A. Bowen, and D. J. Kidgell, “Corticospinal adaptations and strength maintenance in the immobilized arm following 3 weeks unilateral strength training,” Scandinavian Journal of Medicine & Science in Sports. In press. View at Publisher · View at Google Scholar
  55. J. P. Chapman, L. J. Chapman, and J. J. Allen, “The measurement of foot preference,” Neuropsychologia, vol. 25, no. 3, pp. 579–584, 1987. View at Google Scholar · View at Scopus
  56. J. M. Seymour, K. Ward, P. S. Sidhu et al., “Ultrasound measurement of rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD,” Thorax, vol. 64, no. 5, pp. 418–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. C. J. McNeil, P. G. Martin, S. C. Gandevia, and J. L. Taylor, “Long-interval intracortical inhibition in a human hand muscle,” Experimental Brain Research, vol. 209, no. 2, pp. 287–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. M. I. Garry and R. H. S. Thomson, “The effect of test TMS intensity on short-interval intracortical inhibition in different excitability states,” Experimental Brain Research, vol. 193, no. 2, pp. 267–274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. A. F. J. Abercromby, W. E. Amonette, C. S. Layne, B. K. Mcfarlin, M. R. Hinman, and W. H. Paloski, “Variation in neuromuscular responses during acute whole-body vibration exercise,” Medicine and Science in Sports and Exercise, vol. 39, no. 9, pp. 1642–1650, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. J. J. M. Pel, J. Bagheri, L. M. van Dam et al., “Platform accelerations of three different whole-body vibration devices and the transmission of vertical vibrations to the lower limbs,” Medical Engineering and Physics, vol. 31, no. 8, pp. 937–944, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Munn, R. D. Herbert, M. J. Hancock, and S. C. Gandevia, “Training with unilateral resistance exercise increases contralateral strength,” Journal of Applied Physiology, vol. 99, no. 5, pp. 1880–1884, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Shima, K. Ishida, K. Katayama, Y. Morotome, Y. Sato, and M. Miyamura, “Cross education of muscular strength during unilateral resistance training and detraining,” European Journal of Applied Physiology, vol. 86, no. 4, pp. 287–294, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. O. M. Rutherford, “Muscular coordination and strength training. Implications for injury rehabilitation,” Sports Medicine, vol. 5, no. 3, pp. 196–202, 1988. View at Google Scholar · View at Scopus
  64. M. Stone, S. Plisk, and D. Collins, “Training principles: evaluation of modes and methods of resistance training—a coaching perspective,” Sports Biomechanics, vol. 1, no. 1, pp. 79–103, 2002. View at Google Scholar
  65. L. Griffin and E. Cafarelli, “Transcranial magnetic stimulation during resistance training of the tibialis anterior muscle,” Journal of Electromyography and Kinesiology, vol. 17, no. 4, pp. 446–452, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. W. Muellbacher, S. Facchini, B. Boroojerdi, and M. Hallett, “Changes in motor cortex excitability during ipsilateral hand muscle activation in humans,” Clinical Neurophysiology, vol. 111, no. 2, pp. 344–349, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Hortobágyi, J. L. Taylor, N. T. Petersen, G. Russell, and S. C. Gandevia, “Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans,” Journal of Neurophysiology, vol. 90, no. 4, pp. 2451–2459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. M. A. Perez and L. G. Cohen, “Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand,” Journal of Neuroscience, vol. 28, no. 22, pp. 5631–5640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. M. A. Perez, B. K. S. Lungholt, K. Nyborg, and J. B. Nielsen, “Motor skill training induces changes in the excitability of the leg cortical area in healthy humans,” Experimental Brain Research, vol. 159, no. 2, pp. 197–205, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. M. A. Perez, S. Tanaka, S. P. Wise et al., “Neural substrates of intermanual transfer of a newly acquired motor skill,” Current Biology, vol. 17, no. 21, pp. 1896–1902, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Camus, P. Ragert, Y. Vandermeeren, and L. G. Cohen, “Mechanisms controlling motor output to a transfer hand after learning a sequential pinch force skill with the opposite hand,” Clinical Neurophysiology, vol. 120, no. 10, pp. 1859–1865, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Zoghi and M. A. Nordstrom, “Progressive suppression of intracortical inhibition during graded isometric contraction of a hand muscle is not influenced by hand preference,” Experimental Brain Research, vol. 177, no. 2, pp. 266–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Pascual-Leone, N. Dang, L. G. Cohen, J. P. Brasil-Neto, A. Cammarota, and M. Hallett, “Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills,” Journal of Neurophysiology, vol. 74, no. 3, pp. 1037–1045, 1995. View at Google Scholar · View at Scopus
  74. D. G. Sale, “Neural adaptation to resistance training,” Medicine and Science in Sports and Exercise, vol. 20, no. 5, pp. S135–S145, 1988. View at Google Scholar · View at Scopus
  75. R. M. Enoka, “Muscle strength and its development. New perspectives,” Sports Medicine, vol. 6, no. 3, pp. 146–168, 1988. View at Google Scholar · View at Scopus
  76. C. Reynolds and P. Ashby, “Inhibition in the human motor cortex is reduced just before a voluntary contraction,” Neurology, vol. 53, no. 4, pp. 730–735, 1999. View at Google Scholar · View at Scopus
  77. C. M. Stinear and W. D. Byblow, “Role of intracortical inhibition in selective hand muscle activation,” Journal of Neurophysiology, vol. 89, no. 4, pp. 2014–2020, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. J. T. Hopkins, D. Fredericks, P. W. Guyon et al., “Whole body vibration does not potentiate the stretch reflex,” International Journal of Sports Medicine, vol. 30, no. 2, pp. 124–129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. O. Lagerquist, E. P. Zehr, and D. Docherty, “Increased spinal reflex excitability is not associated with neural plasticity underlying the cross-education effect,” Journal of Applied Physiology, vol. 100, no. 1, pp. 83–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. M. S. Fimland, J. Helgerud, G. M. Solstad, V. M. Iversen, G. Leivseth, and J. Hoff, “Neural adaptations underlying cross-education after unilateral strength training,” European Journal of Applied Physiology, vol. 107, no. 6, pp. 723–730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Dragert and E. P. Zehr, “Bilateral neuromuscular plasticity from unilateral training of the ankle dorsiflexors,” Experimental Brain Research, vol. 208, no. 2, pp. 217–227, 2011. View at Publisher · View at Google Scholar · View at Scopus