Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 504905, 9 pages
http://dx.doi.org/10.1100/2012/504905
Research Article

Coevolution of aah: A dps-Like Gene with the Host Bacterium Revealed by Comparative Genomic Analysis

1Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
2Genome Analysis, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstraße 11, 07745 Jena, Germany

Received 11 October 2011; Accepted 14 November 2011

Academic Editors: G. Feron and A. P. Hudson

Copyright © 2012 Liyan Ping et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Almiron, A. J. Link, D. Furlong, and R. Kolter, “A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli,” Genes & Development, vol. 6, pp. 2646–2654, 1992. View at Google Scholar · View at Scopus
  2. J. D. Radolf, L. A. Borenstein, and J. Y. Kim, “Role of disulfide bonds in the oligomeric structure and protease resistance of recombinant and native Treponema pallidum surface antigen 4D,” Journal of Bacteriology, vol. 169, no. 4, pp. 1365–1371, 1987. View at Google Scholar · View at Scopus
  3. G. T. Noordhoek, P. W. M. Hermans, A. N. Paul, L. M. Schouls, J. J. van der Sluis, and J. D. A. van Embden, “Treponema pallidum subspecies pallidum (Nichols) and Treponema pallidum subspecies pertenue (CDC 2575) differ in at least one nucleotide: comparison of two homologous antigens,” Microbial Pathogenesis, vol. 6, no. 1, pp. 29–42, 1989. View at Google Scholar · View at Scopus
  4. A. M. Walfield, E. S. Roche, M. C. Zounes et al., “Primary structure of an oligomeric antigen of Treponema pallidum,” Infection and Immunity, vol. 57, no. 2, pp. 633–635, 1989. View at Google Scholar · View at Scopus
  5. S. J. Norris, “Polypeptides of Treponema pallidum: progress toward understanding their structural, functional, and immunologic roles. Treponema Pallidum Polypeptide Research Group,” Microbiological Reviews, vol. 57, no. 3, pp. 750–779, 1993. View at Google Scholar
  6. P. Ceci, A. Ilari, E. Falvo, and E. Chiancone, “The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage: x-ray crystal structure, iron binding, and hydroxyl-radical scavenging properties,” The Journal of Biological Chemistry, vol. 278, no. 22, pp. 20319–20326, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Roy, R. Saraswathi, S. Gupta, K. Sekar, D. Chatterji, and M. Vijayan, “Role of N and C-terminal tails in DNA binding and assembly in Dps: structural studies of Mycobacterium smegmatis Dps deletion mutants,” Journal of Molecular Biology, vol. 370, no. 4, pp. 752–767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Grant, D. J. Filman, S. E. Finkel, R. Kolter, and J. M. Hogle, “The crystal structure of Dps, a ferritin homolog that binds and protects DNA,” Nature Structural Biology, vol. 5, no. 4, pp. 294–303, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Ilari, S. Stefanini, E. Chiancone, and D. Tsernoglou, “The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site,” Nature Structural Biology, vol. 7, no. 1, pp. 38–43, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Papinutto, W. G. Dundon, N. Pitulis, R. Battistutta, C. Montecucco, and G. Zanotti, “Structure of two iron-binding proteins from Bacillus anthracis,” The Journal of Biological Chemistry, vol. 277, no. 17, pp. 15093–15098, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Ren, G. Tibbelin, T. Kajino, O. Asami, and R. Ladenstein, “The multi-layered structure of Dps with a novel di-nuclear ferroxidase center,” Journal of Molecular Biology, vol. 329, no. 3, pp. 467–477, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Zhao, P. Ceci, A. Ilari et al., “Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli,” The Journal of Biological Chemistry, vol. 277, no. 31, pp. 27689–27696, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. G. P. Ferguson, R. I. Creighton, Y. Nikolaev, and I. R. Booth, “Importance of RpoS and Dps in survival of exposure of both exponential- and stationary-phase Escherichia coli cells to the electrophile N- ethylmaleimide,” Journal of Bacteriology, vol. 180, no. 5, pp. 1030–1036, 1998. View at Google Scholar · View at Scopus
  14. S. H. Choi, D. J. Baumler, and C. W. Kaspar, “Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7,” Applied and Environmental Microbiology, vol. 66, no. 9, pp. 3911–3916, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Ilari, P. Ceci, D. Ferrari, G. L. Rossi, and E. Chiancone, “Iron incorporation into Escherichia coli Dps gives rise to a ferritin-like microcrystalline core,” The Journal of Biological Chemistry, vol. 277, no. 40, pp. 37619–37623, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Chen, L. P. James, and J. D. Helmann, “Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions,” Journal of Bacteriology, vol. 175, no. 17, pp. 5428–5437, 1993. View at Google Scholar · View at Scopus
  17. L. Chen and J. D. Helmann, “Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative-stress gene,” Molecular Microbiology, vol. 18, no. 2, pp. 295–300, 1995. View at Google Scholar · View at Scopus
  18. M. Bozzi, G. Mignogna, S. Stefanini et al., “A novel non-heme iron-binding ferritin related to the DNA-binding proteins of the Dps family in Listeria innocua,” The Journal of Biological Chemistry, vol. 272, no. 6, pp. 3259–3265, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Polidoro, D. de Biase, B. Montagnini et al., “The expression of the dodecameric ferritin in Listeria spp. is induced by iron limitation and stationary growth phase,” Gene, vol. 296, no. 1-2, pp. 121–128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Hebraud and J. Guzzo, “The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins,” FEMS Microbiology Letters, vol. 190, no. 1, pp. 29–34, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. D. J. Evans Jr., D. G. Evans, T. Takemura et al., “Characterization of a Helicobacter pylori neutrophil-activating protein,” Infection and Immunity, vol. 63, no. 6, pp. 2213–2220, 1995. View at Google Scholar · View at Scopus
  22. F. Namavar, M. Sparrius, E. C. I. Veerman, B. J. Appelmelk, and C. M. J. E. Vandenbroucke-Grauls, “Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on high-molecular-weight salivary mucin,” Infection and Immunity, vol. 66, no. 2, pp. 444–447, 1998. View at Google Scholar · View at Scopus
  23. S. Teneberg, H. Miller-Podraza, H. C. Lampert et al., “Carbohydrate binding specificity of the neutrophil-activating protein of Helicobacter pylori,” The Journal of Biological Chemistry, vol. 272, no. 30, pp. 19067–19071, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Ceci, L. Mangiarotti, C. Rivetti, and E. Chiancone, “The neutrophil-activating Dps protein of Helicobacter pylori, HP-NAP, adopts a mechanism different from Escherichia coli Dps to bind and condense DNA,” Nucleic Acids Research, vol. 35, no. 7, pp. 2247–2256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. J. Brentjens, M. Ketterer, M. A. Apicella, and S. M. Spinola, “Fine tangled pili expressed by Haemophilus ducreyi are a novel class of pili,” Journal of Bacteriology, vol. 178, no. 3, pp. 808–816, 1996. View at Google Scholar · View at Scopus
  26. M. M. O. Pena and G. S. Bullerjahn, “The DpsA protein of Synechococcus sp. strain PCC7942 is a DNA-binding hemoprotein: linkage of the Dps and bacterioferritin protein families,” The Journal of Biological Chemistry, vol. 270, no. 38, pp. 22478–22482, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Tonello, W. G. Dundon, B. Satin et al., “The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure,” Molecular Microbiology, vol. 34, no. 2, pp. 238–246, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Yamamoto, M. Higuchi, L. B. Poole, and Y. Kamio, “Role of the dpr product in oxygen tolerance in Streptococcus mutans,” Journal of Bacteriology, vol. 182, no. 13, pp. 3740–3747, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Yamamoto, L. B. Poole, R. R. Hantgan, and Y. Kamio, “An iron-binding protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro,” Journal of Bacteriology, vol. 184, no. 11, pp. 2931–2939, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. A. T. Pulliainen, S. Haataja, S. Kähkönen, and J. Finne, “Molecular basis of H2O2 resistance mediated by streptococcal Dpr: demonstration of the functional involvement of the putative ferroxidase center by site-directed mutagenesis in Streptococcus suis,” The Journal of Biological Chemistry, vol. 278, no. 10, pp. 7996–8005, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. E. R. Rocha, G. Owens Jr., and C. J. Smith, “The redox-sensitive transcriptional activator OxyR regulates the peroxide response regulon in the obligate anaerobe Bacteroides fragilis,” Journal of Bacteriology, vol. 182, no. 18, pp. 5059–5069, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. M. J. Horsburgh, M. O. Clements, H. Crossley, E. Ingham, and S. J. Foster, “PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus,” Infection and Immunity, vol. 69, no. 6, pp. 3744–3754, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Ishikawa, Y. Mizunoe, S. I. Kawabata et al., “The iron-binding protein Dps confers hydrogen peroxide stress resistance to Campylobacter jejuni,” Journal of Bacteriology, vol. 185, no. 3, pp. 1010–1017, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Gupta, S. B. Pandit, N. Srinivasan, and D. Chatterji, “Proteomics analysis of carbon-starved Mycobacterium smegmatis: induction of Dps-like protein,” Protein Engineering, vol. 15, no. 6, pp. 503–511, 2002. View at Google Scholar · View at Scopus
  35. S. Gupta and D. Chatterji, “Bimodal protection of DNA by Mycobacterium smegmatis DNA-binding protein from stationary phase cells,” The Journal of Biological Chemistry, vol. 278, no. 7, pp. 5235–5241, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Roy, R. Saraswathi, D. Chatterji, and M. Vijayan, “Structural studies on the second Mycobacterium smegmatis Dps: invariant and variable features of structure, assembly and function,” Journal of Molecular Biology, vol. 375, no. 4, pp. 948–959, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Ueshima, M. Shoji, D. B. Ratnayake et al., “Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis,” Infection and Immunity, vol. 71, no. 3, pp. 1170–1178, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Chen, G. Ponniah, N. Salonen, and P. Blum, “Culture-independent analysis of fecal enterobacteria in environmental samples by single-cell mRNA profiling,” Applied and Environmental Microbiology, vol. 70, no. 8, pp. 4432–4439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Ping, R. Büchler, A. Mithöfer et al., “A novel Dps-type protein from insect gut bacteria catalyses hydrolysis and synthesis of N-acyl amino acids,” Environmental Microbiology, vol. 9, no. 6, pp. 1572–1583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Bhattacharyya and A. Grove, “The N-terminal extensions of Deinococcus radiodurans Dps-1 mediate DNA major groove interactions as well as assembly of the dodecamer,” The Journal of Biological Chemistry, vol. 282, no. 16, pp. 11921–11930, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. G. Cuypers, E. P. Mitchell, C. V. Romão, and S. M. McSweeney, “The crystal structure of the Dps2 from Deinococcus radiodurans reveals an unusual pore profile with a non-specific metal binding site,” Journal of Molecular Biology, vol. 371, no. 3, pp. 787–799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. X. Wei, H. Mingjia, L. Xiufeng, G. Yang, and W. Qingyu, “Identification and biochemical properties of Dps (starvation-induced DNA binding protein) from cyanobacterium Anabaena sp. PCC 7120,” IUBMB Life, vol. 59, no. 10, pp. 675–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Ishikawa and K. Hotta, “FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content,” FEMS Microbiology Letters, vol. 174, no. 2, pp. 251–253, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Sueoka, “Directional mutation pressure and neutral molecular evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 8, pp. 2653–2657, 1988. View at Google Scholar · View at Scopus
  45. J. R. Lobry and D. Chessel, “Internal correspondence analysis of codon and amino-acid usage in thermophilic bacteria,” Journal of Applied Genetics, vol. 44, no. 2, pp. 235–261, 2003. View at Google Scholar · View at Scopus
  46. S. D. Bentley, M. Maiwald, L. D. Murphy et al., “Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei,” The Lancet, vol. 361, no. 9358, pp. 637–644, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Casjens, N. Palmer, R. van Vugt et al., “A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi,” Molecular Microbiology, vol. 35, no. 3, pp. 490–516, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. D. J. Evans Jr., D. G. Evans, H. C. Lampert, and H. Nakano, “Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori, Anabaena variabilis, Bacillus subtilis and Treponema pallidum, by analysis of gene sequences,” Gene, vol. 153, no. 1, pp. 123–127, 1995. View at Publisher · View at Google Scholar · View at Scopus
  49. W. G. Weisburg, Y. Oyaizu, H. Oyaizu, and C. R. Woese, “Natural relationship between bacteroides and flavobacteria,” Journal of Bacteriology, vol. 164, no. 1, pp. 230–236, 1985. View at Google Scholar · View at Scopus
  50. J. R. Fitzgerald and J. M. Musser, “Evolutionary genomics of pathogenic bacteria,” Trends in Microbiology, vol. 9, no. 11, pp. 547–553, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. T. M. Lowe and S. R. Eddy, “tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence,” Nucleic Acids Research, vol. 25, no. 5, pp. 955–964, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus