Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 525947, 12 pages
http://dx.doi.org/10.1100/2012/525947
Research Article

Imunocompetent Mice Model for Dengue Virus Infection

1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Monte Alegre, 14049-900 Ribeirao Preto, SP, Brazil
2Centro de Pesquisa em Virologia da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Monte Alegre, 14049-900 Ribeirao Preto, SP, Brazil
3Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Avenida Salgado Filho SN, Campus Universitário, 59078-900 Natal, RN, Brazil
4Departamento de Parasitologia, Microbiologia e Imunologia da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Monte Alegre, 14049-900 Ribeirao Preto, SP, Brazil

Received 16 January 2012; Accepted 19 February 2012

Academic Editors: S. Basmaciogullari and M. G. Guzman

Copyright © 2012 Denise Gonçalves et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Dengue fever is a noncontagious infectious disease caused by dengue virus (DENV). DENV belongs to the family Flaviviridae, genus Flavivirus, and is classified into four antigenically distinct serotypes: DENV-1, DENV-2, DENV-3, and DENV-4. The number of nations and people affected has increased steadily and today is considered the most widely spread arbovirus (arthropod-borne viral disease) in the world. The absence of an appropriate animal model for studying the disease has hindered the understanding of dengue pathogenesis. In our study, we have found that immunocompetent C57BL/6 mice infected intraperitoneally with DENV-1 presented some signs of dengue disease such as thrombocytopenia, spleen hemorrhage, liver damage, and increase in production of IFNγ and TNFα cytokines. Moreover, the animals became viremic and the virus was detected in several organs by real-time RT-PCR. Thus, this animal model could be used to study mechanism of dengue virus infection, to test antiviral drugs, as well as to evaluate candidate vaccines.