Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 564932, 11 pages
http://dx.doi.org/10.1100/2012/564932
Research Article

Optimization of Acid Protease Production by Aspergillus niger I1 on Shrimp Peptone Using Statistical Experimental Design

1Laboratoire de Génie Enzymatique et de Microbiologie, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, BP 1173-3038, Sfax, Tunisia
2Faculté des Sciences de Sfax, Université de Sfax, BP 1171-3000, Sfax, Tunisia
3Laboratoire de Génie Enzymatique des Lipases, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, BP 1173-3038, Sfax, Tunisia

Received 24 October 2011; Accepted 5 January 2012

Academic Editors: W. Hunziker and Y. Ueta

Copyright © 2012 Rayda Siala et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. B. Rao, A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande, “Molecular and biotechnological aspects of microbial proteases,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 597–635, 1998. View at Google Scholar · View at Scopus
  2. U. C. Banerjee, R. K. Sani, W. Azmi, and R. Soni, “Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive,” Process Biochemistry, vol. 35, no. 1-2, pp. 213–219, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Gupta, Q. K. Beg, S. Khan, and B. Chauhan, “An overview on fermentation, downstream processing and properties of microbial alkaline proteases,” Applied Microbiology and Biotechnology, vol. 60, no. 4, pp. 381–395, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. D. A. Mitchell and B. K. Lonsane, “Definition, characteristics and potential in solid state cultivation,” in Applied Biotechnology Series, H. W. Doelle, S. A. Mitchell, and C. E. Rolz, Eds., pp. 1–16, Elsevier, Amsterdam, The Netherlands, 1992. View at Google Scholar
  5. R. S. Laxman, A. P. Sonawane, S. V. More et al., “Optimization and scale up of production of alkaline protease from Conidiobolus coronatus,” Process Biochemistry, vol. 40, no. 9, pp. 3152–3158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Gupta, Q. Beg, and P. Lorenz, “Bacterial alkaline proteases: molecular approaches and industrial applications,” Applied Microbiology and Biotechnology, vol. 59, no. 1, pp. 15–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. C. G. Kumar and H. Takagi, “Microbial alkaline proteases: from a bioindustrial viewpoint,” Biotechnology Advances, vol. 17, no. 7, pp. 561–594, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. P. N. Nehete, V. D. Shah, and R. M. Kothari, “Profiles of alkaline protease production as a function of composition of the slant, age, transfer and isolate number and physiological state of culture,” Biotechnology Letters, vol. 7, no. 6, pp. 413–418, 1985. View at Google Scholar · View at Scopus
  9. M. M. Kole, I. Draper, and D. F. Gerson, “Production of protease by Bacillus subtilis using simultaneous control of glucose and ammonium concentrations,” Journal of Chemical Technology and Biotechnology, vol. 41, no. 3, pp. 197–206, 1988. View at Google Scholar · View at Scopus
  10. H. Varela, M. D. Ferrari, L. Belobrajdic, R. Weyrauch, and L. Loperena, “Short communication: effect of medium composition on the production by a new Bacillus subtilis isolate of protease with promising unhairing activity,” World Journal of Microbiology and Biotechnology, vol. 12, no. 6, pp. 643–645, 1996. View at Google Scholar · View at Scopus
  11. B. Johnvesly and G. R. Naik, “Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium,” Process Biochemistry, vol. 37, no. 2, pp. 139–144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Kirk, T. V. Borchert, and C. C. Fuglsang, “Industrial enzyme applications,” Current Opinion in Biotechnology, vol. 13, no. 4, pp. 345–351, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Gessesse and B. A. Gashe, “Production of alkaline protease by an alkaliphilic bacteria isolated from an alkaline soda lake,” Biotechnology Letters, vol. 19, no. 5, pp. 479–481, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Ellouz, A. Bayoudh, S. Kammoun, N. Gharsallah, and M. Nasri, “Production of protease by Bacillus subtilis grown on sardinelle heads and viscera flour,” Bioresource Technology, vol. 80, no. 1, pp. 49–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Haddar, N. Fakhfakh-Zouari, N. Hmidet, F. Frikha, M. Nasri, and A. S. Kamoun, “Low-cost fermentation medium for alkaline protease production by Bacillus mojavensis A21 using hulled grain of wheat and sardinella peptone,” Journal of Bioscience and Bioengineering, vol. 110, no. 3, pp. 288–294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. N. E. Hadj-Ali, N. Hmidet, N. Souissi, A. Sellami-Kamoun, and M. Nasri, “The use of an economical medium for the production of alkaline serine proteases by Bacillus licheniformis NH1,” African Journal of Biotechnology, vol. 9, no. 18, pp. 2668–2674, 2010. View at Google Scholar · View at Scopus
  17. A. Sellami-Kamoun, B. Ghorbel-Frikha, A. Haddar, and M. Nasri, “Enhanced Bacillus cereus BG1 protease production by the use of sardinelle (Sardinella aurita) powder,” Annals of Microbiology, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. P. D. Haaland, “Statistical problem solving,” in Experimental Design in Biotechnology, P. D. Haaland, Ed., pp. 1–18, Marcel Dekker, New York, NY, USA, 1989. View at Google Scholar
  19. J. De Coninck, S. Bouquelet, V. Dumortier, F. Duyme, and I. Verdier-Denantes, “Industrial media and fermentation processes for improved growth and protease production by Tetrahymena thermophila,” Journal of Industrial Microbiology and Biotechnology, vol. 24, no. 4, pp. 285–290, 2000. View at Google Scholar · View at Scopus
  20. G. Annadurai, S. Rajesh Babu, G. Nagarajan, and K. Ragu, “Use of Box-Behnken design of experiments in the production of manganese peroxidase by Phanerochaete chrysosporium (MTCC 767) and decolorization of crystal violet,” Bioprocess Engineering, vol. 23, no. 6, pp. 715–719, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. J. R. Dutta, P. K. Dutta, and R. Banerjee, “Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models,” Process Biochemistry, vol. 39, no. 12, pp. 2193–2198, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Adinarayana, P. Ellaiah, B. Srinivasulu, R. Bhavani Devi, and G. Adinarayana, “Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation,” Process Biochemistry, vol. 38, no. 11, pp. 1565–1572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Siala, A. Sellami-Kamoun, M. Hajji, I. Abid, N. Gharsallah, and M. Nasri, “Extracellular acid protease from Aspergillus niger I1: purification and characterization,” African Journal of Biotechnology, vol. 8, no. 18, pp. 4582–4589, 2009. View at Google Scholar · View at Scopus
  24. M. Hajji, A. Rebai, N. Gharsallah, and M. Nasri, “Optimization of alkaline protease production by Aspergillus clavatus ES1 in Mirabilis jalapa tuber powder using statistical experimental design,” Applied Microbiology and Biotechnology, vol. 79, no. 6, pp. 915–923, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Manni, K. Jellouli, O. Ghorbel-Bellaaj et al., “An oxidant- and solvent-stable protease produced by bacillus cereus SV1: application in the deproteinization of shrimp wastes and as a laundry detergent additive,” Applied Biochemistry and Biotechnology, vol. 160, no. 8, pp. 2308–2321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Chi and S. Zhao, “Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain,” Enzyme and Microbial Technology, vol. 33, no. 2-3, pp. 206–211, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. A. A. Kembhavi, A. Kulkarni, and A. Pant, “Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64,” Applied Biochemistry and Biotechnology, vol. 38, no. 1-2, pp. 83–92, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. R. L. Plackett and J. P. Burman, “The design of optimum multifactorial experiments,” Biometrika, vol. 33, pp. 305–325, 1946. View at Google Scholar
  29. F. L. Garcia-Carreno, L. E. Dimes, and N. F. Haard, “Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors,” Analytical Biochemistry, vol. 214, no. 1, pp. 65–69, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Alizadeh and M. Zare, “Enhancement of sensitivity of molecularly imprinted polymer based parathion voltammetric sensor by using experimental design techniques,” Analytical and Bioanalytical Electrochemistry, vol. 1, pp. 169–187, 2009. View at Google Scholar
  32. J. N. Mohanasundararaju, R. Sivasubramanian, and N. Alagumurthi, “Optimisation of work roll grinding using Response Surface Methodology and evolutionary algorithm,” International Journal of Manufacturing Research, vol. 3, no. 2, pp. 236–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Pandey, P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan, “Advances in microbial amylases,” Biotechnology and Applied Biochemistry, vol. 31, no. 2, pp. 135–152, 2000. View at Google Scholar · View at Scopus
  34. B. Chauhan and R. Gupta, “Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14,” Process Biochemistry, vol. 39, no. 12, pp. 2115–2122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Tari, H. Genckal, and F. Tokatli, “Optimization of a growth medium using a statistical approach for the production of an alkaline protease from a newly isolated Bacillus sp. L21,” Process Biochemistry, vol. 41, no. 3, pp. 659–665, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Fakhfakh-Zouari, A. Haddar, N. Hmidet, F. Frikha, and M. Nasri, “Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties,” Process Biochemistry, vol. 45, no. 5, pp. 617–626, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. F. S. Luciana and H. H. Sato, “Production of alkaline protease from cellulosimicrobium cellulans,” Brazilian Journal of Microbiology, vol. 40, no. 1, pp. 54–60, 2009. View at Google Scholar · View at Scopus
  38. S. Negi and R. Banerjee, “Amylase and protease production from A. Awamori,” Food Technology and Biotechnology, vol. 44, pp. 257–261, 2006. View at Google Scholar
  39. T. Y. Wu, A. W. Mohammad, J. M. D. Jahim, and N. Anuar, “Optimized reuse and bioconversion from retentate of pre-filtered palm oil mill effluent (POME) into microbial protease by Aspergillus terreus using response surface methodology,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 9, pp. 1390–1396, 2009. View at Publisher · View at Google Scholar
  40. J. P. van den Hombergh, M. D. Sollewijn Gelpke, P. J. I. Van De Vondervoort, F. P. Buxton, and J. Visser, “Disruption of three acid proteases in Aspergillus niger—effects on protease spectrum, intracellular proteolysis, and degradation of target proteins,” European Journal of Biochemistry, vol. 247, no. 2, pp. 605–613, 1997. View at Google Scholar · View at Scopus
  41. K. S. Vishwanatha, A. G. Appu Rao, and S. A. Singh, “Characterisation of acid protease expressed from Aspergillus oryzae MTCC 5341,” Food Chemistry, vol. 114, no. 2, pp. 402–407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Kolaczkowska, “Aspartic proteinase from Penicillium camemberti: purification, properties, and substrate specificity,” Enzyme and Microbial Technology, vol. 17, no. 8, pp. 719–724, 1995. View at Publisher · View at Google Scholar
  43. S. Kumar, N. S. Sharma, M. R. Saharan, and R. Singh, “Extracellular acid protease from Rhizopus oryzae: purification and characterization,” Process Biochemistry, vol. 40, no. 5, pp. 1701–1705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. F. M. Olajuyigbe, J. O. Ajele, and T. L. Olawoye, “Some physicochemical properties of acid protease produced during growth of Aspergillus niger (NRRL 1785),” Global Journal of Pure and Applied Science, vol. 9, pp. 523–528, 2003. View at Google Scholar
  45. L. C. Wu and Y. D. Hang, “Purification and characterization of acid proteinase from Neosartorya fischeri var. spinosa IBT 4872,” Letters in Applied Microbiology, vol. 27, no. 2, pp. 71–75, 1998. View at Google Scholar · View at Scopus
  46. H. Hashimoto, T. Iwaasa, and T. Yokotsuka, “Some properties of acid protease from the thermophilic fungus, Penicillium duponti K1014,” Applied Microbiology, vol. 25, no. 4, pp. 578–583, 1973. View at Google Scholar · View at Scopus
  47. A. M. Hashem, “Optimization of milk-clotting enzyme productivity by Penicillium oxalicum,” Bioresource Technology, vol. 70, no. 2, pp. 203–207, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Alessandro and F. Federico, “Partial purification and characterization of a yeast extracellular acid protease,” Journal of Dairy Science, vol. 63, no. 9, pp. 1397–1402, 1980. View at Google Scholar · View at Scopus
  49. H. Zhu, D. C. Guo, and B. P. Dancik, “Purification and characterization of an extracellular acid proteinase from the ectomycorrhizal fungus Hebeloma crustuliniforme,” Applied and Environmental Microbiology, vol. 56, no. 4, pp. 837–843, 1990. View at Google Scholar · View at Scopus
  50. G. A. Somkuti and F. J. Babel, “Purification and properties of Mucor pusillus acid protease,” Journal of Bacteriology, vol. 95, no. 4, pp. 1407–1414, 1968. View at Google Scholar · View at Scopus
  51. D. E. J. W. Basten, J. Visser, and P. J. Schaap, “Lysine aminopeptidase of Aspergillus niger,” Microbiology, vol. 147, no. 8, pp. 2045–2050, 2001. View at Google Scholar · View at Scopus
  52. M. Monod, S. Capoccia, B. Léchenne, C. Zaugg, M. Holdom, and O. Jousson, “Secreted proteases from pathogenic fungi,” International Journal of Medical Microbiology, vol. 292, no. 5-6, pp. 405–419, 2002. View at Google Scholar · View at Scopus
  53. K. Gomi, K. Arikawa, N. Kamiya, K. Kitamoto, and C. Kumagai, “Cloning and nucleotide sequence of the acid protease-encoding gene (pepA) from Aspergillus oryzae,” Bioscience, Biotechnology, and Biochemistry, vol. 57, no. 7, pp. 1095–1100, 1993. View at Google Scholar · View at Scopus