Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 572514, 9 pages
http://dx.doi.org/10.1100/2012/572514
Research Article

Effect of Magnesium Supplementation on the Distribution Patterns of Zinc, Copper, and Magnesium in Rabbits Exposed to Prolonged Cadmium Intoxication

1Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
2Institute of Occupational Health, Faculty of Medicine, University of Belgrade, Deligradska 29, 11000 Belgrade, Serbia

Received 8 February 2012; Accepted 1 April 2012

Academic Editors: M. Y. Arica, N. Ercal, P. Maček, and E. Shibata

Copyright © 2012 Zorica Bulat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Bertin and D. Averbeck, “Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences,” Biochimie, vol. 88, no. 11, pp. 1549–1559, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Matović, A. Buha, Z. Bulat, and D. Đukić-ĆOsić, “Cadmium toxicity revisited: focus on oxidative stress induction and interactions with zinc and magnesium,” Arhiv za Higijenu Rada i Toksikologiju, vol. 62, no. 1, pp. 65–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. D. Pulido and A. R. Parrish, “Metal-induced apoptosis: mechanisms,” Mutation Research, vol. 533, no. 1-2, pp. 227–241, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. P. Waalkes, “Cadmium carcinogenesis in review,” Journal of Inorganic Biochemistry, vol. 79, no. 1-4, pp. 241–244, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Moulis, “Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals,” BioMetals, vol. 23, no. 5, pp. 877–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Peraza, F. Ayala-Fierro, D. S. Barber, E. Casarez, and L. T. Rael, “Effects of micronutrients on metal toxicity,” Environmental Health Perspectives, vol. 106, no. 1, pp. 203–216, 1998. View at Google Scholar · View at Scopus
  7. G. F. Nordberg, B. A. Fowler, and L. Friberg, “Factors influencing metabolism and toxicity of metals: a consensus report by the task group on metal interaction,” Environmental Health Perspectives, vol. 25, pp. 3–41, 1978. View at Google Scholar · View at Scopus
  8. J. Anastassopoulou and T. Theophanides, “Magnesium-DNA interactions and the possible relation of magnesium to carcinogenesis. Irradiation and free radicals,” Critical Reviews in Oncology/Hematology, vol. 42, no. 1, pp. 79–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Martelli, E. Rousselet, C. Dycke, A. Bouron, and J. M. Moulis, “Cadmium toxicity in animal cells by interference with essential metals,” Biochimie, vol. 88, no. 11, pp. 1807–1814, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. G. Reeves and R. L. Chaney, “Bioavailability as an issue in risk assessment and management of food cadmium: a review,” Science of the Total Environment, vol. 398, no. 1-3, pp. 13–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Vormann, “Magnesium: nutrition and metabolism,” Molecular Aspects of Medicine, vol. 24, no. 1-3, pp. 27–37, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Rogalska, M. M. Brzóska, A. Roszczenko, and J. Moniuszko-Jakoniuk, “Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats,” Chemico-Biological Interactions, vol. 177, no. 2, pp. 142–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Rogalska, B. Pilat-Marcinkiewicz, and M. M. Brzóska, “Protective effect of zinc against cadmium hepatotoxicity depends on this bioelement intake and level of cadmium exposure: a study in a rat model,” Chemico-Biological Interactions, vol. 193, no. 3, pp. 191–203, 2011. View at Publisher · View at Google Scholar
  14. M. M. Brzóska and J. Moniuszko-Jakoniuk, “Interactions between cadmium and zinc in the organism,” Food and Chemical Toxicology, vol. 39, no. 10, pp. 967–980, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. P. Bulat, D. Đjukić-Ćosić, Ž. Maličević, P. Bulat, and V. Matović, “Zinc or magnesium supplementation modulates Cd intoxication in blood, kidney, spleen, and bone of rabbits,” Biological Trace Element Research, vol. 124, no. 2, pp. 110–117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. M. Brzóska, M. Galazyn-Sidorczuk, J. Rogalska et al., “Beneficial effect of zinc supplementation on biomechanical properties of femoral distal end and femoral diaphysis of male rats chronically exposed to cadmium,” Chemico-Biological Interactions, vol. 171, no. 3, pp. 312–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Lazarus, T. Orct, J. Jurasović, and M. Blanuša, “The effect of dietary selenium supplementation on cadmium absorption and retention in suckling rats,” BioMetals, vol. 22, no. 6, pp. 973–983, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Zwolak and H. Zaporowska, “Selenium interactions and toxicity: a review,” Cell Biology and Toxicology, vol. 28, no. 1, pp. 31–46, 2012. View at Publisher · View at Google Scholar
  19. V. Matović, Z. P. Bulat, D. Đjukić-Ćosić, and D. Soldatović, “Antagonism between cadmium and magnesium: a possible role of magnesium in therapy of cadmium intoxication,” Magnesium Research, vol. 23, no. 1, pp. 19–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Đjukić-Ćosić, M. Ninković, Z. Maličević, V. Matović, and D. Soldatović, “Effect of magnesium pretreatment on reduced glutathione levels in tissues of mice exposed to acute and subacute cadmium intoxication: a time course study,” Magnesium Research, vol. 20, no. 3, pp. 177–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Đjukić-Ćosić, M. Ninković, Z. Maličević, Z. Plamenac-Bulat, and V. Matović, “Effect of supplemental magnesium on the kidney levels of cadmium, zinc, and copper of mice exposed to toxic levels of cadmium,” Biological Trace Element Research, vol. 114, no. 1-3, pp. 281–292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Đjukić-Ćosić, The effect of magnesium on oxidative stress and bioelements in mice exposed to acute and subacute cadmium intoxication, Ph.D. thesis, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia, 2011.
  23. M. Boujelben, F. Ghorbel, C. Vincent et al., “Lipid peroxidation and HSP72/73 expression in rat following cadmium chloride administration: interactions of magnesium supplementation,” Experimental and Toxicologic Pathology, vol. 57, no. 5-6, pp. 437–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Đjukić-Ćosić, M. Ćurčić Jovanović, Z. Plamenac Bulat, M. Ninković, Ž. Maličević, and V. Matović, “Relation between lipid peroxidation and iron concentration in mouse liver after acute and subacute cadmium intoxication,” Journal of Trace Elements in Medicine and Biology, vol. 22, no. 1, pp. 66–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Jacquillet, O. Barbier, M. Cougnon et al., “Zinc protects renal function during cadmium intoxication in the rat,” American Journal of Physiology, vol. 290, no. 1, pp. F127–F137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Wang, X. Zhou, D. Yang, and Z. Wang, “Effects of lead and/or cadmium on the distribution patterns of some essential trace elements in immature female rats,” Human and Experimental Toxicology, vol. 30, no. 12, pp. 1914–1923, 2011. View at Publisher · View at Google Scholar
  27. Z. P. Bulat, D. Đukić-Ćosić, M. Dokić, P. Bulat, and V. Matović, “Blood and urine cadmium and bioelements profile in nickel-cadmium battery workers in Serbia,” Toxicology and Industrial Health, vol. 25, no. 2, pp. 129–135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Watanabe, Z. W. Zhang, C. S. Moon et al., “Cadmium exposure of women in general populations in Japan during 1991–1997 compared with 1977–1981,” International Archives of Occupational and Environmental Health, vol. 73, no. 1, pp. 26–34, 2000. View at Google Scholar · View at Scopus
  29. N. E. L. Saris, E. Mervaala, H. Karppanen, J. A. Khawaja, and A. Lewenstam, “Magnesium: an update on physiological, clinical and analytical aspects,” Clinica Chimica Acta, vol. 294, no. 1-2, pp. 1–26, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. J. van der Wijst, J. G. J. Hoenderop, and R. J. M. Bindels, “Epithelial Mg2+ channel TRPM6: insight into the molecular regulation,” Magnesium Research, vol. 22, no. 3, pp. 127–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. P. Liuzzi and R. J. Cousins, “Mammalian zinc transporters,” Annual Review of Nutrition, vol. 24, pp. 151–172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Martineau, E. Abed, G. Médina et al., “Involvement of transient receptor potential melastatin-related 7 (TRPM7) channels in cadmium uptake and cytotoxicity in MC3T3-E1 osteoblasts,” Toxicology Letters, vol. 199, no. 3, pp. 357–363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Thévenod, “Catch me if you can! Novel aspects of cadmium transport in mammalian cells,” BioMetals, vol. 23, no. 5, pp. 857–875, 2010. View at Publisher · View at Google Scholar
  34. M. Li, J. Du, J. Jiang et al., “Molecular determinants of Mg2+ and Ca2+ permeability and pH sensitivity in TRPM6 and TRPM7,” Journal of Biological Chemistry, vol. 282, no. 35, pp. 25817–25830, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Satarug, “Changes in zinc and copper homeostasis in human livers and kidneys associated with exposure to environmental cadmium,” Human and Experimental Toxicology, vol. 20, no. 4, pp. 205–213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. B. R. Stern, M. Solioz, D. Krewski et al., “Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships,” Journal of Toxicology and Environmental Health B, vol. 10, no. 3, pp. 157–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. C. D. Klaassen and L. M. Aleksunes, “Xenobiotic, bile acid, and cholesterol transporters: function and regulation,” Pharmacological Reviews, vol. 62, no. 1, pp. 1–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Soldatović, V. Matović, D. Vujanović, and Z. Stojanović, “Contribution to interaction between magnesium and toxic metals: the effect of prolonged cadmium intoxication on magnesium metabolism in rabbits,” Magnesium Research, vol. 11, no. 4, pp. 283–288, 1998. View at Google Scholar · View at Scopus
  39. C. Bates-Withers, R. Sah, and D. E. Clapham, “TRPM7, the Mg2+ inhibited channel and kinase,” Advances in Experimental Medicine and Biology, vol. 704, pp. 173–183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Nasiadek, T. Krawczyk, and A. Sapota, “Tissue levels of cadmium and trace elements in patients with myoma and uterine cancer,” Human and Experimental Toxicology, vol. 24, no. 12, pp. 623–630, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Oledzka and D. Skrajnowska, “Effect of magnesium supplementation on magnesium, zinc, iron and copper balance in rats,” in Metal Ions in Biology and Medicine, L. Khassanova, P. Collery, I. Maymard, Z. Khassanova, and J. C. Étienne, Eds., vol. 7, pp. 207–211, John Libbey Eurotext, Paris, France, 2002. View at Google Scholar