Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 630390, 11 pages
Research Article

Applying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of Cruciferous Weeds in Winter Crops

Institute for Sustainable Agriculture (IAS), CSIC, P.O. Box 4084, 14080 Córdoba, Spain

Received 13 December 2011; Accepted 11 January 2012

Academic Editors: R. Sarkar and E. Tyystjarvi

Copyright © 2012 Ana-Isabel de Castro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops.