Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 630390, 11 pages
http://dx.doi.org/10.1100/2012/630390
Research Article

Applying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of Cruciferous Weeds in Winter Crops

Institute for Sustainable Agriculture (IAS), CSIC, P.O. Box 4084, 14080 Córdoba, Spain

Received 13 December 2011; Accepted 11 January 2012

Academic Editors: R. Sarkar and E. Tyystjarvi

Copyright © 2012 Ana-Isabel de Castro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. T. Mas and A. M. C. Verdú, “Tillage system effects on weed communities in a 4-year crop rotation under Mediterranean dryland conditions,” Soil and Tillage Research, vol. 74, no. 1, pp. 15–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Dhima and I. Eleftherohorinos, “Wild mustard (Sinapis arvensis L.) competition with three winter cereals as affected by nitrogen supply,” Journal of Agronomy and Crop Science, vol. 191, no. 4, pp. 241–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. B. L. Beres, G. W. Clayton, K. N. Harker, F. C. Stevenson, R. E. Blackshaw, and R. J. Graf, “A sustainable management package to improve winter wheat production and competition with weeds,” Agronomy Journal, vol. 102, no. 2, pp. 649–657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. A. Brandt, “Management practices for black lentil green manure for the semi-arid Canadian prairies,” Canadian Journal of Plant Science, vol. 79, no. 1, pp. 11–17, 1999. View at Google Scholar · View at Scopus
  5. G. K. McDonald, K. L. Hollaway, and L. McMurray, “Increasing plant density improves weed competition in lentil (Lens culinaris),” Australian Journal of Experimental Agriculture, vol. 47, no. 1, pp. 48–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. P. J. W. Lutman, “Estimation of seed production by Stellaria media, Sinapis arvensis and Tripleurospermum inodorum in arable crops,” Weed Research, vol. 42, no. 5, pp. 359–369, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. P. R. Miller, R. E. Engel, and J. A. Holmes, “Cropping sequence effect of pea and pea management on spring wheat in the northern Great Plains,” Agronomy Journal, vol. 98, no. 6, pp. 1610–1619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. I. de Castro, M. Jurado-Exposito, J. M. Peña-Barragán, L. Garcia Torres, and F. Lopez-Granados, “Clasificación de Diplotaxis virgata y Sinapis arvensis en trigo, habas y guisantes mediante imágenes aéreas,” in Proceedings of the 12th Congresso SEMh/ XIX, XIX Congresso ALAM, II Congresso IBCM, ISA Press, Ed., vol. 2, pp. 579–582, Lisbon, Portugal, 2009.
  9. M. Jurado-Expósito, F. López-Granados, L. García-Torres, A. García-Ferrer, M. S. De La Orden, and S. Atenciano, “Multi-species weed spatial variability and site-specific management maps in cultivated sunflower,” Weed Science, vol. 51, no. 3, pp. 319–328, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Jurado-Expósito, F. López-Granados, J. M. Peña-Barragán, and L. García-Torres, “A digital elevation model to aid geostatistical mapping of weeds in sunflower crops,” Agronomy for Sustainable Development, vol. 29, no. 2, pp. 391–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. R. Thorp and L. F. Tian, “A review on remote sensing of weeds in agriculture,” Precision Agriculture, vol. 5, no. 5, pp. 477–508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. F. López-Granados, “Weed detection for site-specific weed management: mapping and real-time approaches,” Weed Research, vol. 51, no. 1, pp. 1–11, 2011. View at Publisher · View at Google Scholar
  13. S. Heijting, W. Van Der Werf, A. Stein, and M. J. Kropff, “Are weed patches stable in location? Application of an explicitly two-dimensional methodology,” Weed Research, vol. 47, no. 5, pp. 381–395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Peña-Barragán, F. López-Granados, M. Jurado-Expósito, and L. García-Torres, “Spectral discrimination of Ridolfia segetum and sunflower as affected by phenological stage,” Weed Research, vol. 46, no. 1, pp. 10–21, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. F. López-Granados, J. M. Peña-Barragán, M. Jurado-Expósito et al., “Multispectral classification of grass weeds and wheat (Triticum durum) using linear and nonparametric functional discriminant analysis and neural networks,” Weed Research, vol. 48, no. 1, pp. 28–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. T. Gómez-Casero, I. L. Castillejo-González, A. García-Ferrer et al., “Spectral discrimination of wild oat and canary grass in wheat fields for less herbicide application,” Agronomy for Sustainable Development, vol. 30, no. 3, pp. 689–699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. S. Schmidt and A. K. Skidmore, “Spectral discrimination of vegetation types in a coastal wetland,” Remote Sensing of Environment, vol. 85, no. 1, pp. 92–108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. H. Koger, L. M. Bruce, D. R. Shaw, and K. N. Reddy, “Wavelet analysis of hyperspectral reflectance data for detecting pitted morningglory (Ipomoea lacunosa) in soybean (Glycine max),” Remote Sensing of Environment, vol. 86, no. 1, pp. 108–119, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. K. C. Hutto, D. R. Shaw, J. D. Byrd, and R. L. King, “Differentiation of turfgrass and common weed species using hyperspectral radiometry,” Weed Science, vol. 54, no. 2, pp. 335–339, 2006. View at Google Scholar · View at Scopus
  20. A. T. Nieuwenhuizen, J. W. Hofstee, J. C. van de Zande, J. Meuleman, and E. J. van Henten, “Classification of sugar beet and volunteer potato reflection spectra with a neural network and statistical discriminant analysis to select discriminative wavelengths,” Computers and Electronics in Agriculture, vol. 73, no. 2, pp. 146–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Smith and R. E. Blackshaw, “Weed-crop discrimination using remote sensing: a detached leaf experiment,” Weed Technology, vol. 17, no. 4, pp. 811–820, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. P. K. Goel, S. O. Prasher, J. A. Landry et al., “Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn,” Computers and Electronics in Agriculture, vol. 38, no. 2, pp. 99–124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. C. H. Koger, D. R. Shaw, K. N. Reddy, and L. M. Bruce, “Detection of pitted morningglory (lpomoea lacunosa) with hyperspectral remote sensing. II. Effects of vegetation around cover and reflectance properties,” Weed Science, vol. 52, no. 2, pp. 230–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Karimi, S. O. Prasher, H. McNairn, R. B. Bonnell, P. Dutilleul, and P. K. Goel, “Classification accuracy of discriminant analysis, artificial neural networks, and decision trees for weed and nitrogen stress detection in corn,” Transactions of the American Society of Agricultural Engineers, vol. 48, no. 3, pp. 1261–1268, 2005. View at Google Scholar · View at Scopus
  25. M. Backes and J. Jacobi, “Classification of weed patches in QuickBird images: verification by ground-truth data,” in EARSEL (European Association of Remote Sensing laboratories) eProceedings, vol. 5, pp. 172–179, European Association of Remote Sensing laboratories, Warsaw, Poland, 2 edition, 2006. View at Google Scholar
  26. P. D. Lancashire, H. Bleiholder, T. van den Doom et al., “A uniform decimal code for growth stages of crops and weeds,” Annals of Applied Biology, vol. 119, no. 3, pp. 561–601, 1991. View at Publisher · View at Google Scholar
  27. J. W. Salisbury, “Environmental factors affecting reflectance measurements. In: spectral measurements field guide,” Tech. Rep. ADA362372, Defense Technical Information Center, Fort Belvoir, Va, 1999. View at Google Scholar
  28. P. S. Thenkabail, E. A. Enclona, M. S. Ashton, and B. Van Der Meer, “Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications,” Remote Sensing of Environment, vol. 91, no. 3-4, pp. 354–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. W. Rouse, R. H. Haas, J. A. Schell, and D. W. Deering, “Monitoring vegetation systems in the Greant Plains with ERTS,” in Proceedings of the Earth Resources Technology Satellite Symposium NASA SP-351, vol. 1, pp. 309–317, Washington, DC, USA, 1973.
  30. C. F. Jordan, “Derivation of leaf area index from quality of light on the forest floor,” Ecology, vol. 50, no. 4, pp. 663–666, 1969. View at Google Scholar
  31. J. H. Everitt and R. Villarreal, “Detecting huisache (Acacia farnesiana) and mexican palo-verde (Parkinsonia aculeata) by aerial photography,” Weed Science, vol. 35, no. 3, pp. 427–432, 1987. View at Google Scholar
  32. Y. Karimi, S. O. Prasher, H. McNairn, R. B. Bonnell, P. Dutilleul, and P. K. Goel, “Discriminant analysis of hyperspectral data for assessing water and nitrogen stresses in corn,” Transactions of the American Society of Agricultural Engineers, vol. 48, no. 2, pp. 805–813, 2005. View at Google Scholar · View at Scopus
  33. B. Visauta and J. C. Martori, Análisis Estadístico con SPSS para Windows, vol. 2 of Estadística Multivariante, McGraw-Hill Interamericana de España S.A.U., Madrid, Spain, 2nd edition, 2003.
  34. M. Këranen, E. M. Aro, E. Tyystjärvi, and O. Nevalainen, “Automatic plant identification with chlorophyll fluorescence fingerprinting,” Precision Agriculture, vol. 4, no. 1, pp. 53–67, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. T. F. Burks, S. A. Shearer, J. R. Heath, and K. D. Donohue, “Evaluation of neural-network classifiers for weed species discrimination,” Biosystems Engineering, vol. 91, no. 3, pp. 293–304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. B. M. del Brío and S. A. Molina, Redes Neuronales y Sistemas Borrosos, RA-MA, Madrid, Spain, 3rd edition, 2006.
  37. C. H. Koger, D. R. Shaw, C. E. Watson, and K. N. Reddy, “Detecting late-season weed infestations in soybean (Glycine max),” Weed Technology, vol. 17, no. 4, pp. 696–704, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. F. López-Granados, M. Jurado-Expósito, J. M. Peña-Barragan, and L. García-Torres, “Using remote sensing for identification of late-season grass weed patches in wheat,” Weed Science, vol. 54, no. 2, pp. 346–353, 2006. View at Google Scholar · View at Scopus
  39. F. López-Granados, M. T. Gómez-Casero, J. M. Peña-Barragán, M. Jurado-Expósito, and L. García-Torres, “Classifying irrigated crops as affected by phenological stage using discriminant analysis and neural networks,” Journal of the American Society for Horticultural Science, vol. 135, no. 5, pp. 465–473, 2010. View at Google Scholar · View at Scopus
  40. C. C. Yang, S. O. Prasher, J. Landry, and H. S. Ramaswamy, “Development of neural networks for weed recognition in corn fields,” Transactions of the American Society of Agricultural Engineers, vol. 45, no. 3, pp. 859–864, 2002. View at Google Scholar · View at Scopus
  41. I. Kavdir, “Discrimination of sunflower, weed and soil by artificial neural networks,” Computers and Electronics in Agriculture, vol. 44, no. 2, pp. 153–160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. Anonymous, “Directive 2009/128/CE. Directive for sustainable use of pesticides,” Official Journal of European Union, vol. L309, pp. 71–86, 2009. View at Google Scholar