Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 634835, 5 pages
http://dx.doi.org/10.1100/2012/634835
Research Article

DC-SIGN (CD209) Promoter −336 A/G (rs4804803) Polymorphism Associated with Susceptibility of Kawasaki Disease

1Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
2College of Medicine, Chang Gung University, Kaohsiung, Taiwan
3Department of Healthcare Management, Yuanpei University, Hsinchu 30015, Taiwan
4Department of Medical Research and Pediatrics, Show Chwan Memorial Hospital in Chang Bing, Changhua 505, Taiwan
5Department of Nursing, Chang Gung Memorial Hospital, Chiayi, Taiwan
6Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
7Cancer Center, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan

Received 10 November 2011; Accepted 2 January 2012

Academic Editors: A. Asea and E. Ayroldi

Copyright © 2012 Hong-Ren Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Burns and M. P. Glodé, “Kawasaki syndrome,” Lancet, vol. 364, no. 9433, pp. 533–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. C. L. Wang, Y. T. Wu, C. A. Liu, H. C. Kuo, and K. D. Yang, “Kawasaki disease: infection, immunity and genetics,” Pediatric Infectious Disease Journal, vol. 24, no. 11, pp. 998–1004, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. W. Newburger, M. Takahashi, M. A. Gerber et al., “Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the committee on rheumatic fever, endocarditis, and Kawasaki disease, council on cardiovascular disease in the young, American Heart Association,” Pediatrics, vol. 114, no. 6, pp. 1708–1733, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Galeotti, J. Bayry, I. Kone-Paut, and S. V. Kaveri, “Kawasaki disease: aetiopathogenesis and therapeutic utility of intravenous immunoglobulin,” Autoimmunity Reviews, vol. 9, no. 6, pp. 441–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. N. Arnold, M. R. Wormald, R. B. Sim, P. M. Rudd, and R. A. Dwek, “The impact of glycosylation on the biological function and structure of human immunoglobulins,” Annual Review of Immunology, vol. 25, pp. 21–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. M. Anthony and J. V. Ravetch, “A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs,” Journal of Clinical Immunology, vol. 30, no. 1, supplement, pp. S9–S14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Marzi, T. Gramberg, G. Simmons et al., “DC-SIGN and DC-SIGNR interact with the glycoprotein of marburg virus and the S protein of severe acute respiratory syndrome coronavirus,” Journal of Virology, vol. 78, no. 21, pp. 12090–12095, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. F. O. Vannberg, S. J. Chapman, C. C. Khor et al., “CD209 genetic polymorphism and tuberculosis disease,” PLoS ONE, vol. 3, no. 1, article e1388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Koizumi, S. Kageyama, Y. Fujiyama et al., “RANTES -28G delays and DC-SIGN −139C enhances AIDS progression in HIV type 1-infected Japanese hemophiliacs,” AIDS Research and Human Retroviruses, vol. 23, no. 5, pp. 713–719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. C. Kuo, C. L. Wang, C. D. Liang et al., “Association of lower eosinophil-related T helper 2 (Th2) cytokines with coronary artery lesions in Kawasaki disease,” Pediatric Allergy and Immunology, vol. 20, no. 3, pp. 266–272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. C. Kuo, C. L. Wang, C. D. Liang et al., “Persistent monocytosis after intravenous immunoglobulin therapy correlated with the development of coronary artery lesions in patients with Kawasaki disease,” Journal of Microbiology, Immunology and Infection, vol. 40, no. 5, pp. 395–400, 2007. View at Google Scholar · View at Scopus
  12. H. R. Yu, H. C. Kuo, J. M. Sheen et al., “A unique plasma proteomic profiling with imbalanced fibrinogen cascade in patients with Kawasaki disease,” Pediatric Allergy and Immunology, vol. 20, no. 7, pp. 699–707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. T. Shulman, J. De Inocencio, and R. Hirsch, “Kawasaki disease,” Pediatric Clinics of North America, vol. 42, no. 5, pp. 1205–1222, 1995. View at Google Scholar · View at Scopus
  14. H. R. Yu, H. C. Kuo, E. Y. Huang et al., “Plasma clusterin levels in predicting the occurrence of coronary artery lesions in patients with kawasaki disease,” Pediatric Cardiology, vol. 31, no. 8, pp. 1151–1156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. D. Liang, H. C. Kuo, K. D. Yang, C. L. Wang, and S. F. Ko, “Coronary artery fistula associated with Kawasaki disease,” American Heart Journal, vol. 157, no. 3, pp. 584–588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. H. C. Kuo, K. D. Yang, C. D. Liang et al., “The relationship of eosinophilia to intravenous immunoglobulin treatment failure in Kawasaki disease,” Pediatric Allergy and Immunology, vol. 18, no. 4, pp. 354–359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Wang, R.-F. Chen, J.-W. Liu et al., “DC-SIGN (CD209) promoter −336 A/G polymorphism is associated with dengue hemorrhagic fever and correlated to DC-SIGN expression and immune augmentation,” PLoS Neglected Tropical Diseases, vol. 5, no. 1, article e934, 2011. View at Publisher · View at Google Scholar
  18. S. I. Gringhuis, J. den Dunnen, M. Litjens, B. van het Hof, Y. van Kooyk, and T. H. Geijtenbeek, “C-type lectin DC-SIGN modulates toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB,” Immunity, vol. 26, no. 5, pp. 605–616, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. T. B. H. Geijtenbeek, D. S. Kwon, R. Torensma et al., “DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells,” Cell, vol. 100, no. 5, pp. 587–597, 2000. View at Google Scholar · View at Scopus
  20. E. Pokidysheva, Y. Zhang, A. J. Battisti et al., “Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN,” Cell, vol. 124, no. 3, pp. 485–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. L. De Witte, M. Abt, S. Schneider-Schaulies, Y. Van Kooyk, and T. B. H. Geijtenbeek, “Measles virus targets DC-SIGN to enhance dendritic cell infection,” Journal of Virology, vol. 80, no. 7, pp. 3477–3486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. I. Gringhuis, J. den Dunnen, M. Litjens, M. van der Vlist, and T. B. H. Geijtenbeek, “Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori,” Nature Immunology, vol. 10, no. 10, pp. 1081–1088, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Cambi, K. Gijzen, I. J. M. de Vries et al., “The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells,” European Journal of Immunology, vol. 33, no. 2, pp. 532–538, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Mittal, S. Bulgheresi, C. Emami, and N. V. Prasadarao, “Enterobacter sakazakii targets DC-SIGN to induce immunosuppressive responses in dendritic cells by modulating MAPKs,” Journal of Immunology, vol. 183, no. 10, pp. 6588–6599, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Lidar, N. Lipschitz, P. Langevitz, and Y. Shoenfeld, “The infectious etiology of vasculitis,” Autoimmunity, vol. 42, no. 5, pp. 432–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Nakamura, M. Yashiro, R. Uehara, I. Oki, M. Watanabe, and H. Yanagawa, “Epidemiologic features of Kawasaki disease in Japan: results from the nationwide survey in 2005-2006,” Journal of Epidemiology, vol. 18, no. 4, pp. 167–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. F. Xu, W. L. Liu, J. Q. Dong et al., “Sequencing of DC-SIGN promoter indicates an association between promoter variation and risk of nasopharyngeal carcinoma in cantonese,” BMC Medical Genetics, vol. 11, no. 1, article 161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Kashima, E. S. Rodrigues, R. Azevedo et al., “DC-SIGN (CD209) gene promoter polymorphisms in a Brazilian population and their association with human T-cell lymphotropic virus type 1 infection,” Journal of General Virology, vol. 90, no. 4, pp. 927–934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Ben-Ali, L. B. Barreiro, A. Chabbou et al., “Promoter and neck region length variation of DC-SIGN is not associated with susceptibility to tuberculosis in Tunisian patients,” Human Immunology, vol. 68, no. 11, pp. 908–912, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Tha-In, J. Bayry, H. J. Metselaar, S. V. Kaveri, and J. Kwekkeboom, “Modulation of the cellular immune system by intravenous immunoglobulin,” Trends in Immunology, vol. 29, no. 12, pp. 608–615, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Ichiyama, Y. Ueno, M. Hasegawa, A. Niimi, T. Matsubara, and S. Furukawa, “Intravenous immunoglobulin inhibits NF-κB activation and affects Fcγ receptor expression in monocytes/macrophages,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 369, no. 4, pp. 428–433, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Yoshimura, K. Tatsumi, A. Iharada et al., “Increased nitric oxide production by neutrophils in early stage of Kawasaki disease,” European Journal of Pediatrics, vol. 168, no. 9, pp. 1037–1041, 2009. View at Google Scholar · View at Scopus
  33. L. B. Barreiro, O. Neyrolles, C. L. Babb et al., “Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis,” PLoS Medicine, vol. 3, no. 2, article e20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Zheng, Y. Zhou, L. Qin et al., “Relationship between polymorphism of DC-SIGN (CD209) gene and the susceptibility to pulmonary tuberculosis in an eastern Chinese population,” Human Immunology, vol. 72, pp. 183–186, 2011. View at Publisher · View at Google Scholar · View at Scopus