Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 691413, 6 pages
http://dx.doi.org/10.1100/2012/691413
Research Article

A Fast and Efficient Adaptive Threshold Rate Control Scheme for Remote Sensing Images

1Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044, China
2School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Received 27 August 2012; Accepted 1 November 2012

Academic Editors: O. Hadar and M. Strojnik

Copyright © 2012 Xiao Chen and Xiaoqing Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The JPEG2000 image compression standard is ideal for processing remote sensing images. However, its algorithm is complex and it requires large amounts of memory, making it difficult to adapt to the limited transmission and storage resources necessary for remote sensing images. In the present study, an improved rate control algorithm for remote sensing images is proposed. The required coded blocks are sorted downward according to their numbers of bit planes prior to entropy coding. An adaptive threshold computed from the combination of the minimum number of bit planes, along with the minimum rate-distortion slope and the compression ratio, is used to truncate passes of each code block during Tier-1 encoding. This routine avoids the encoding of all code passes and improves the coding efficiency. The simulation results show that the computational cost and working buffer memory size of the proposed algorithm reach only 18.13 and 7.81%, respectively, of the same parameters in the postcompression rate distortion algorithm, while the peak signal-to-noise ratio across the images remains almost the same. The proposed algorithm not only greatly reduces the code complexity and buffer requirements but also maintains the image quality.