Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 691579, 11 pages
http://dx.doi.org/10.1100/2012/691579
Research Article

Novel Computational Methodologies for Structural Modeling of Spacious Ligand Binding Sites of G-Protein-Coupled Receptors: Development and Application to Human Leukotriene B4 Receptor

1Graduate School of Innovation & Technology Management, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
2Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan

Received 12 October 2012; Accepted 30 October 2012

Academic Editors: S. Jahandideh, P. Jain, and M. Liu

Copyright © 2012 Yoko Ishino and Takanori Harada. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. L. Lowes, N. Y. Ip, and Y. H. Wong, “Integration of signals from receptor tyrosine kinases and G protein-coupled receptors,” NeuroSignals, vol. 11, no. 1, pp. 5–19, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. K. J. Miller, B. J. Murphy, and M. A. Pelleymounter, “Central G-protein coupled receptors (GPCR)s as molecular targets for the treatment of obesity: assets, liabilities and development status,” Current Drug Targets, vol. 3, no. 5, pp. 357–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. L. Parker, M. S. Parker, R. Sah, and F. Sallee, “Angiogenesis and rhodopsin-like receptors: a role for N-terminal acidic residues?” Biochemical and Biophysical Research Communications, vol. 335, no. 4, pp. 983–992, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. G. V. Rayasam, V. K. Tulasi, J. A. Davis, and V. S. Bansal, “Fatty acid receptors as new therapeutic targets for diabetes,” Expert Opinion on Therapeutic Targets, vol. 11, no. 5, pp. 661–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Drews, “Drug discovery: a historical perspective,” Science, vol. 287, no. 5460, pp. 1960–1964, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. D. K. Vassilatis, J. G. Hohmann, H. Zeng et al., “The G protein-coupled receptor repertoires of human and mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4903–4908, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Lundstrom, “Structural genomics and drug discovery: molecular pharmacology,” Journal of Cellular and Molecular Medicine, vol. 11, no. 2, pp. 224–238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Palczewski, T. Kumasaka, T. Hori et al., “Crystal structure of rhodopsin: a G protein-coupled receptor,” Science, vol. 289, no. 5480, pp. 739–745, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Cherezov, D. M. Rosenbaum, M. A. Hanson et al., “High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor,” Science, vol. 318, no. 5854, pp. 1258–1265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. M. Rosenbaum, V. Cherezov, M. A. Hanson et al., “GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function,” Science, vol. 318, no. 5854, pp. 1266–1273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Warne, M. J. Serrano-Vega, J. G. Baker et al., “Structure of a β1-adrenergic G-protein-coupled receptor,” Nature, vol. 454, no. 7203, pp. 486–491, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. V. P. Jaakola, M. T. Griffith, M. A. Hanson et al., “The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist,” Science, vol. 322, no. 5905, pp. 1211–1217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Wu, D. Wacker, M. Mileni et al., “Structure of the human κ-opioid receptor in complex with JDTic,” Nature, vol. 485, pp. 327–332, 2012. View at Google Scholar
  14. A. Manglik, A. C. Kruse, T. S. Kobilka et al., “Crystal structure of the μ-opioid receptor bound to a morphinan antagonist,” Nature, vol. 485, pp. 321–326, 2012. View at Google Scholar
  15. J. Moult, K. Fidelis, A. Kryshtafovych, B. Rost, and A. Tramontano, “Critical assessment of methods of protein structure prediction-Round VIII,” Proteins, vol. 77, no. 9, pp. 1–4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Michino, E. Abola, C. L. Brooks III, J. S. Dixon, J. Moult, and R. C. Stevens, “Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008,” Nature Reviews Drug Discovery, vol. 8, no. 6, pp. 455–463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. R. Whorton, M. P. Bokoch, S. G. F. Rasmussen et al., “A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7682–7687, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Altenbach, A. K. Kusnetzow, O. P. Ernst, K. P. Hofmann, and W. L. Hubbell, “High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 21, pp. 7439–7444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Fanelli and D. Dell'Orco, “Rhodopsin activation follows precoupling with transducin: inferences from computational analysis,” Biochemistry, vol. 44, no. 45, pp. 14695–14700, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Isin, A. J. Rader, H. K. Dhiman, J. Klein-Seetharaman, and I. Bahar, “Predisposition of the dark state of rhodopsin to functional changes in structure,” Proteins: Structure, Function and Genetics, vol. 65, no. 4, pp. 970–983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Y. Niv, L. Skrabanek, M. Filizola, and H. Weinstein, “Modeling activated states of GPCRs: the rhodopsin template,” Journal of Computer-Aided Molecular Design, vol. 20, no. 7-8, pp. 437–448, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. P. R. Gouldson, N. J. Kidley, R. P. Bywater et al., “Toward the active conformations of rhodopsin and the β-adrenergic receptor,” Proteins: Structure, Function and Genetics, vol. 56, no. 1, pp. 67–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Saitô, Y. Kawase, A. Kira et al., “Surface and dynamic structures of bacteriorhodopsin in a 2D crystal a distorted or disrupted lattice, as revealed by site-directed solid-state 13C NMR,” Photochemistry and Photobiology, vol. 83, no. 2, pp. 253–262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. L. Lu and E. C. Hulme, “A network of conserved intramolecular contacts defines the off-state of the transmembrane switch mechanism in a seven-transmembrane receptor,” Journal of Biological Chemistry, vol. 275, no. 8, pp. 5682–5686, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. L. J. Eshelman and J. D. Schaffer, “Real-coded genetic algorithms and interval-schemata,” Foundations of Genetic Algorithms, vol. 2, pp. 187–202, 1993. View at Google Scholar
  26. I. Ono, H. Sato, and S. Kobayashi, “A real-coded genetic algorithm for function optimization using the unimodal normal distribution crossover,” The Japanese Society for Artificial Intelligence, vol. 14, pp. 1146–1155, 1999. View at Google Scholar
  27. H. Sato, I. Ono, and S. Kobayashi, “A new generation alternation model of genetic algorithms and its assessment,” The Japanese Society for Artificial Intelligence, vol. 12, pp. 734–744, 1997. View at Google Scholar
  28. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. U. Pieper, N. Eswar, B. M. Webb et al., “MODBASE, a database of annotated comparative protein structure models and associated resources,” Nucleic Acids Research, vol. 37, no. 1, pp. D347–D354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Sali, “ModPipe: a software to calculate protein structure models,” 2012, http://salilab.org/modpipe/.
  31. J. W. Ponder, “Tinker: a software for molecular design,” 2012, http://dasher.wustl.edu/tinker/.
  32. A. Sabirsh, R. P. Bywater, J. Bristulf, C. Owman, and J. Z. Haeggström, “Residues from transmembrane helices 3 and 5 participate in leukotriene B4 binding to BLT1,” Biochemistry, vol. 45, no. 18, pp. 5733–5744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. L. Verdonk, J. C. Cole, M. J. Hartshorn, C. W. Murray, and R. D. Taylor, “Improved protein-ligand docking using GOLD,” Proteins: Structure, Function and Genetics, vol. 52, no. 4, pp. 609–623, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Standfuss, P. C. Edwards, A. D'Antona et al., “The structural basis of agonist-induced activation in constitutively active rhodopsin,” Nature, vol. 471, no. 7340, pp. 656–660, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Bissantz, P. Bernard, M. Hibert, and D. Rognan, “Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets?” Proteins: Structure, Function and Genetics, vol. 50, no. 1, pp. 5–25, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. C. M. Oshiro, I. D. Kuntz, and J. S. Dixon, “Flexible ligand docking using a genetic algorithm,” Journal of Computer-Aided Molecular Design, vol. 9, no. 2, pp. 113–130, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. J. C. Mobarec and M. Filizola, “Advances in the development and application of computational methodologies for structural modeling of G-protein-coupled receptors,” Expert Opinion on Drug Discovery, vol. 3, no. 3, pp. 343–355, 2008. View at Publisher · View at Google Scholar · View at Scopus